

FOR DELETE TALLE 1913 Ø . . jL 1:111 .11.5'. MANIA mannannin 1111 1111111 A. A. Barbartan The summe depart partition of gud all all and a set and and Alburth MANNAH MARY AND PRIMAN

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

HE 18.5 H37 Dot. TSC-LMTH - 82-17 Dot. TSC-LMTH - 82-17

Technical Repart Documentatian Page

1. Report No.	2. Government Ad	ccession No.	3. Recipient's Cotolog No.									
UMTA-MA-06-0120-82-4												
4. Title ond Subtitle	а 		5. Report Date									
TEQUNOLOGY OF ADDIGULADED DI	NATE DUGE	DEPARTMENT OF	October 1982									
TECHNOLOGY OF ARTICULATED T	RANSIT BUSES	TRANSPORTATION	6. Performing Organizoti	on Code								
		1000	TSC/DTS-63									
7. Author's)		JUL 1983	8. Performing Orgonizoti									
Richard G. Gundersen		TIBBYBA	DOT-TSC-UMTA-	82-17								
9. Performing Orgonization Nome and Addres	s	LIBHNHA	0. Work Unit No. (TRAI	S)								
U.S. Department of Transport	ation	e and a constant of the constant of the constant	UM262/R2653									
Research and Special Program	ns Administr	ation	11. Contract or Grant No									
Transportation Systems Cente	er											
Cambridge MA 02142			13. Type of Report and F	eriod Covered								
12. Sponsoring Agency Name ond Address U.S. Department of Transpor Urban Mass Transportation A Office of Technical Assista	tation Administrati ance	on	Final Report									
Office of Bus and Paratrans Washington DC 20590	sit Systems		14. Sponsoring Agency C URT-20	ode								
15. Supplementory Notes			······									
		DEPARTMENT (
		TRANSPORTATI										
16. Abstroct		JUL 195	3									
			~									
This study assembles tech awareness and understandi role in urban transportat on: 1) status of deploym 2) design and performance experiences in the operat	ng of the a ion. The r ment of arti aspects of	rticulated transi eport is organize culated transit c this type of veh ntenance of artic	t coach and its ed to provide inf coaches in this o nicle; and 3) gen culated buses.	emerging Formation country;								
17. Key Words		18. Distribution Stoter	ment									
Articulated transit bus performance, O&M	design,	THROUGH THE INFORMATION	DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161									
19. Security Clossif. (of this report)	20. Security C	lossif. (of this poge)	21. No. of Pages	22. Price								
UNCLASSIFIED		LASSIFIED	258									
UNCLASSIFIED	230											
Form DOT F 1700.7 (8-72)	Reproduction of	completed poge outhoriz	ed									

PREFACE

This study was conducted to assemble technical information to increase the transit communities' awareness and understanding of the articulated transit coach and its emerging role in urban transportation. This study was initiated and sponsored by UMTA's Office of Bus and Paratransit Systems.

The report is organized to provide an understanding of: 1) status of deployment of articulated transit coaches in this country; 2) design and performance aspects of this type of vehicle; and 3) general experiences in the operation and maintenance of articulated buses.

The report was prepared by the Urban Systems Division of the Transportation Systems Center. Important contributions in the identification of foreign producers of articulated buses and the development of comparative specifications (Appendix A & B) were made by Mr. Ted Hawkes, President of Transportation Equipment Development Company.

Symbol		≘.5. <i>⊂</i>	, v			د م ^ر م	mi ⁴			10	5 £				fl oz	14 JB	gal	با ع	۶þ۸			°,			
Measures To find		inches inches faet	yards	2		square inches square yards	square miles ecres				bounds	short tons			fluid ounces	pints quarts	gallons	cubic feet	cubic yards			Fahrenheit temperature		°F 212 160 200	80
ions from Metric Multiply by	LENGTH	0.04 0.4	1.1	2	AREA	0.16 1.2	0.4 2.5	1	MASS (weight)	300.0	2.2	1.1		AULUME	0.03	2.1	0.26	35	1.3		TEMPERATURE (exact)	9/5 (then add 32)		98.6 60 1 120	37 40
Approximate Conversions from Metric Measures When You Know Multiply by To Find		millimeters centimeters meters	møters			square centimeters square meters	square kilometers hectares $(10.000 m^2)$		MA		grams kilograms	tonnes (1000 kg)		1	milliliters	liters	liters	cubic meters	cubic meters		TEMPE	Celsius temperature			1
Symbol		E 5 a	: e 1			ີສິ	km ²	ł			9 ko	-			Ē				°E			ç			
23 23	72 07	6τ 	81	2T	9T	12 		• T 	ετ 	72 		т 111111	οτ 	6		8		L 	9		S	•	3	2	כש ^ז
9	8	 	7		I.I.I.	' ' ' 6		יויו	5	1	' '	' '	' ' ' 4	יויו	יןיו		' 3	'!'	' '	 ' '	' ' 2	' ' ' '	•		inches
Symbol			E E	εş		cm²	°e °e	km ²	e f		6	б¥ ,			Ē	Ē	Ē.		-	-"	ĒĒ		°		ol. 236.
Measures To Find			centimeters centimeters	meters kilometers		square centimeters	square meters square meters	square kilometers	hectares		grams	kilograms tonnes			milliliters	milliliters	milititers	liters	liters	liters	cubic meters cubic meters		Celsius	temperature	tables, see NBS Misc. Put
Approximate Conversions to Metric Measures	I E WGTH		•2.5 30	0.9 1.6	AREA	6.5	0.09 8.0	2.6	0.4 ACC ((Jufiam) CCVM	28	0.45		VULUME	ŝ	15	30	0.47	0.95	3.8	0.76	TEMPERATURE (exact)	5/9 (after	subtracting 32)	ersions and more detailed D Catalog No. C13.10:286
Approximate Conv When You Know			inches feet	yards miles	1	square inches	square feet square vards	square miles	acres		ounces	pounds short tons	(2000 lb)		teaspoons	tablespoons	fluid ounces	cups pints	quarts	gallons	cubic reet cubic yards	TEMPE	Fahrenheit	temperature	 In a 2.54 leactly). For other exact conversions and more detailed tables, see NBS Misc. Publ. 286, Units of Weights and Measures, Price \$2.25, SD Catalog No. C13.10.286.
, umbal	5															Tbsp	11 02				-11 Ad ³				in = 2.54 p

METRIC CONVERSION FACTORS

iv

REPORT OUTLINE

	Page
1.0 INTRODUCTION	. 1
2.0 PURPOSE	. 5
3.0 OVERVIEW OF ARTICULATED TRANSIT BUS DEPLOYMENT	. 6
3.1 Current Status of Articulated Bus Fleet	. 6 . 17
4.0 GENERAL CHARACTERISTICS OF ARTICULATED BUS TECHNOLOGY	
 4.1 Brief Profile of U.S. Manufacturers	 25 27 29 31 35 35
5.0 OPERATIONAL AND MAINTENANCE CHARACTERISTICS	. 43
5.1 Operational Characteristics	. 43
5.1.1 Fuel Economy	. 44 . 45 . 46 . 47 . 47
5.2 Maintenance Characteristics • • • • • • • • • • • • • • • • • • •	. 53
 5.2.1 Servicing, Inspection and Storage 5.2.2 Transmission Reliability and Maintenance 5.2.3 Air Conditioning Reliability and Maintenance 5.2.4 Accessory Belt Drives 5.2.5 Parts Cost and Delivery 5.2.6 Body Repair 5.2.7 Brake and Tire Life 5.2.8 Articulated Joint 	. 54 .,55 . 56 . 56 . 58 . 58
6.0 MISCELLANEOUS TECHNICAL INFORMATION	. 65
7.0 FINDINGS AND CONSIDERATIONS	, 73

REPORT OUTLINE (CONTINUED)

Page

APPENDIX	Α	-	REPRESENTAT	FIVE LIST	OF	NORTH	AMERICAN	AND	I	A-1
			EUROPEAN AF	RTICULATE	D BL	JS MANU	JFACTURERS			

APPENDIX B - DESIGN AND PERFORMANCE CHARACTERISTICS OF B-1 SELECTED ARTICULATED TRANSIT BUSES

LIST OF FIGURES

Figure		Page
1	Distribution of Domestic Fleet of Articulated Transit Buses	11
2	Relative Contract Prices: Articulated and Conventional Transit Coaches	15
3	Characteristics of the U.S. Articulated Bus Market in the U.S.	19
4	Representative Bus Chassis	26
5	Propulsion Configurations	27
6	Relative Bus Sizes	32
7	Turning Envelope	32
8	Swing-Out with Steered Rear Axle	33
9	Swing-Out with Fixed Rear Axle	33
10	Articulated Bus Operation on Ramps	35
11	Relative Movement of Articulated Joint	36
12	M.A.N. Chassis	38
13	Renault Chassis	40
14	Neoplan Articulated Double Decker Bus	69
15	Maintenance of Articulated Bus Mechanism Using Portable Lift Equipment	72

LIST OF TABLES

<u>Table</u>		Page
1	Chronology of Articulated Bus Experiences in the U.S.	3
2	Procurement History of U.S. Articulated Transit Buses	7
3	Comparison of Passenger Capability	30
4	Relative Capacities of Articulated and Conventional Buses at Equal Passenger Comfort Levels	31
5	Representative Turning Radii	34
6	Summary of Operational Experiences of Articulated Buses in the U.S.	49
7	Summary of Servicing and Maintenance Experiences	60
В	Summary Design, Dimensional and Performance Characteristics (Appendix B)	B-1

.

Since the first major demonstration of articulated buses in the mid 1970's and the first purchase in late 1978, interest in articulated buses in U.S. transit service has remained strong. This interest is instigated by public transit agencies' desire to increase passenger capacity, improve productivity and reduce or at least maintain operating costs. Further, the interest is evidenced by the delivery and deployment of over 500 articulated buses to fourteen cities and a current backorder of about another 700 units for a total capital investment of over \$300 million.

This study was conducted to provide technical assistance to urban transit managers and state DOT's for use in their analyses and decision-making related to new deployments of articulated transit buses. Operational and maintenance experiences were obtained from each U.S. property currently using these high capacity vehicles. In addition, technical design and performance information was obtained from U.S. producers and numerous foreign articulated bus manufacturers. In general, this report provides status information on articulated bus technology and its performance, to date, in domestic service.

Currently, there are three U.S. producers of articulated transit coaches, M.A.N., Truck and Bus Corp., Crown Coach Corp., and Neoplan, USA. GMC Truck and Coach Division reportedly will enter the market in 1984. To date, only M.A.N. and Crown Coach have any buses on the street and all of these were produced as driveable "bus shells" in Europe and finished to buyer's specification in this country. Very shortly M.A.N. will fabricate the total bus in the U.S. at its new North Carolina manufacturing facility.

There are many European producers of articulated vehicles; this report identifies more than 20 companies that are actively engaged in the fabrication of articulated bus chassis, bodies or the whole bus. Their production facilities and capacities vary widely.

After a few early problems and adjustments, particularly in the air conditioning, electrical system and the automatic transmission, and after special training for mechanics and operators, the articulated coach has performed well in

ix

all U.S. transit environments. Although data and opinions vary from locationto-location, the performance of the articulated vehicle has improved to where, in general, its availability for and reliability in revenue service is as good as the newer segments of the U.S. fleet. The fuel economy (2.5-3.5 mpg) is relatively good on a per seat-mile basis, since passenger capacity, both seated and standing, is about 50 percent greater than a conventional, 40-foot coach. Except possibly for very hilly or very narrow routes, the articulated transit coach has been operated successfully on all types of urban and suburban runs. These high capacity vehicles are used during peak ridership hours in all locations on express runs, radial or crosstown routes with high passenger demand and, in many locations, during the off-peak periods as well for up to eighteen revenue service hours per day.

Articulated vehicles typically have been assigned to runs to meet existing high demands or to increase ridership. To better realize and document the full potential of articulated buses in U.S. transit service, it is generally agreed that special planning and scheduling efforts are needed for each location and route.

1.0 INTRODUCTION

The cost of operating bus transit systems in U.S. urban areas continues to rise sharply. Operating expense for transit bus services in this country during 1980 totalled about \$4.9 billion dollars - an increase of almost 19 percent over 1979.¹ This translates into an average cost of about \$2.90 for every mile of service travelled in 1980. Considering inflation and increases in contracted labor rates and fuel prices since that time, it is estimated that this average cost per vehicle-mile now has risen to \$3.50 to \$3.75. Transit properties are concerned with this trend, particularly with the eminent elimination of Federal operating subsidy, and are looking at new technology and operating practices to help control bus operating costs.

Although on a nationwide basis mass transit ridership apparently has leveled off, it is arguable that this plateau is caused more by the fact that properties have reached their service capacities than by the conjecture that demand has peaked. It is clear that there is a definite relationship between service (seated and total capacity being important elements of service) and ridership. Many properties continue to increase their ridership on selected routes merely by providing additional vehicles during peak hours. Common practice among transit properties is to run "double-headers" to satisfy high passenger demands. It is recognized that this is a costly method since it requires additional drivers on the payroll to operate the extra vehicles during morning and afternoon peak periods. Again, transit operators are interested in providing better service to meet ridership demands (existing and latent) in the most efficient manner.

Virtually all transit operators in large urban areas have one or both of the following categories of routes:

^{1. &}quot;Transit Fact Book," 1981, American Public Transit Association

- A) Express routes where passengers typically board at one or a few stops at the beginning of the run and off-load at a single stop at the end of the route; or
- B) Major arterial routes or corridors, either crosstown or radial, with high peak period, work or school trip ridership and relatively high off-peak demand, as well.

The passenger demand characteristics of such routes could be approaching that which is sufficient to justify the construction of light rail service. Transit operators here again must work within constraints, such as the density of existing construction, availability of right-of-way, and funding, to most appropriately meet the existing passenger demand.

Therefore, for at least the reasons discussed,

- o potential reduction in operating costs,
- o need to increase capacity (seated and total capacity), and
- o potential alternative for fixed, capital-intensive
 transit modes

domestic transit properties in the past decade have begun to seriously investigate the benefits of high capacity buses, particularly the articulated transit bus.

An articulated bus, for the purpose of this report, is defined as a vehicle designed for carrying passengers, and comprised of two sections permanently joined by a hinge mechanism or "articulated joint" allowing vertical and horizontal relative movement as well as a weather-tight passage for riders moving from one section of the bus to the other.

In contrast to the standard-size transit coach, which benefited from development efforts of numerous early U.S. producers (White, Mack, Yellow Coach, Twin Coach, General Motors Corp.), the articulated buses in service in this country, for the most part, are a product of European research and development. As the accompanying chronology of experiences (Table 1) demonstrates, the infusion of articulates into our domestic fleet clearly had

its origin in Europe. The growth of the articulated bus market is the result of both intense and able European marketing and the recognition by the U.S. transit community that such a high capacity bus could be efficiently and effectively deployed in urban transit.

TABLE 1 CHRONOLOGY OF ARTICULATED BUS EXPERIENCE IN THE U.S.*

		CHRONOLOGY OF ARTICULATED BUS EXPERIENCES IN THE U.S.*
1940	÷.,	CLEVELAND; ARTICULATED TROLLEY BUS, SUPER TUIN WITH 58 SEATS; FRANK & WILLIAM FAGEOL, U.S. BUILDERS: 1 BUS, VERTICAL ARTICULATION ONLY.
1946	-	SANTA FE TRAILWAYS: INTERCITY ARTICULATED BUS; 60-FOOT: KAISER INDUSTRIAL, U.S. BUILDERS: 1 BUS.
1948	~	CHICAGO; ARTICULATED TROLLEY BUS, SUPER TWIN WITH 58 SEATS: F&W FAGOEL, U.S. BUILDERS, 1 BUS.
1948	-	OMAHA: ARTICULATED BUS (PROPANE): SUPER TWIN: U.S. BUILDER: 15 BUSES.
1957-8	-	COLORADO: INTERCITY ARTICULATED BUS: KASSPOHRER, GERMAN BUILDER: 6 BUSES.
EARLY 1960's	-	CONTINENTAL TPAILWAYS: INTERCITY ARTICULATED BUS CALLED "SUPER GOLDEN EAGLE": KASSBOHRER, GERMAN BUILDER: 5 BUSES.
1965	-	A.C. TRANSIT PURCHASED THE ABOVE 5 "SUPER GOLDEN EAGLES", CONVERTED THE VEHICLE INTO A 77-SEAT TRANSIT COACH AND PLACED IN TRANSBAY EXPRESS SERVICE IN 1966.
1972	-	FORMATION OF "PROJECT SUPER BUS", A CONSORTIUM OF SEVERAL TRANSIT OPERATORS TOGETHER WITH URBAN MASS TRANSPORTATION ADMINISTRATION
1974	-	VOLVO AND MASCHINENFABRIK AUGSBURG - NUERENBERG (M.A.N.) EACH PROVIDED THEIR ARTICULATED TRANSIT BUS FOR DEMONSTRATION AND TEST BY SEVERAL MAJOR TRANSIT PROPERTIES.
1975	_	SEATTLE METRO SOLICITS BIDS.
1976	-	FORMATION OF ARTICULATED BUS COMMITTEE OF TEN TRANSIT SYSTEMS, SOLICITATION FOR BIDS, AWARD TO AM GENERAL AND M.A.N.
1976	_	AWARD OF SEATTLE ORDER FOR 151 60-FOOT ARTICULATED BUSES.
		IN SUBSEQUENT YEARS, NUMEROUS OTHER CITLES HAVE AWARDED CONTRACTS FOR ARTICULATED TRANSIT BUSES FROM THREE DIFFERENT PRODUCERS. FURTHER CHRONOLOGICAL DATA IS PROVIDED IN TABLE 2.
*SOURC	:E	"DEVELOPMENT AND OPERATION OF HIGH-CAPACITY BUSES IN THE U.S.". CALIFORNIA DEPARTMENT OF TRANSPORTATION, TRANSIT DEVELOPMENT BRANCH, JULY, 1980.

Currently, fourteen U.S. transit properties are operating about 511 (increasing all the time) articulated buses with a cumulative fleet mileage to date of more than 40 million miles. Another 692 articulated buses are on order. Approximately \$100 million has been expended by Federal, state, and local governments to purchase the vehicles; future commitments amount to an additional \$200 million. The timing appears to be appropriate for a general review of how well the articulated bus has performed in the U.S. transit environment since the first major delivery slightly more than four years ago.

2.0 PURPOSE

This study was conducted to provide technical assistance to urban transit managers and state DOT's for use in their analyses and decision-making related to the deployment of articulated transit buses. The information contained in this report addresses two major aspects of these high-capacity buses:

- A description of the design and technology of commercially-available articulated buses, both foreign and domestically produced; and
- A general review of the current domestic operating and maintenance experiences of the articulated buses.

It is hoped that such technical information will increase the transit communities' awareness and understanding of the articulated transit coach and its emerging role in urban transportation.

3.0 OVERVIEW OF ARTICULATED TRANSIT BUS DEPLOYMENT IN THE U.S.

To initiate discussion of articulated bus technology it might be best to first characterize the existing domestic fleet. In this way a proper prespective can be formed on the scope, magnitude and overall status of deployment of this relatively new technology. This will be followed by additional information to suggest future trends in the use of articulated buses for urban transit.

3.1 Current Status of Articulated Bus Fleet

The characteristics of the current fleet of articulated buses are shown in Table 2. There are a number of important findings to be aware of concerning the procurement of articulated buses.

Procurement of articulated transit buses in this country has occurred, to a large extent through the formation of a consortium. Ten of the fourteen properties (all except Louisville, Portland, San Mateo and Seattle) now operating articulated buses were members of the 1976 Caltrans Consortium; nine of the twelve properties expecting delivery (all except Atlanta, Chicago and Seattle) were part of the 1981 Pittsburgh Consortium. Clearly, there are no requirements or standards mandating participation in these groups. As properties and vehicle manufacturers gain experience and the articulated bus market increases, the benefits (such as those gained by economics of scale) of group buys may fade. The procurement of articulated buses in the near future could be conducted very similar to the procurement of standard-size coach. Some evidence of this is the fact that, among others, Milwaukee CTS, MUNI-San Francisco, SEMTA-Detroit, and Jacksonville Transit Authority are all in the process of independently procuring articulated transit buses.

The popularity of the sixty-foot articulated bus, compared to the 55-foot, is demonstrated by the fact that about 82 percent of delivered buses and 78% of the orders are the longer version. All buses in service and on order are 102 inches wide. Transit properties interested in capacity apparently felt the additional five feet worthwhile.

	ACTUAL **						t	~		1 487	1,402			_	~				1 850	476	569.	5.232	5.174	. 816	262,222	,755		239,400	7,248	2,695				
			N/A	N/A	N/A	N/A	N/A			A/N 020		N/A	N/A	N/A	N/A			× / 14	040 269	221	275	26	266	264	262	280		239	267	272				
	CONTRACT PRICE		\$172.673	. 67	174,286	228,000	174,286	174,286	177 672	1/2,0/3 231 250	174 286	247.447	174,286	142,246	172,673			7/0 500	270,000	240 144	279.577	284.683	279,008	284.267	275,679	290,993	299,600	236,400	286,699	274,467			nge	•
*	DATE OF LAST DELIVERY		2/27/79		5/27/78	6/26/81	12/27/78	7/27/78	9///7/f	12/1//81	10/27/78	7/24/81	11/27/78	1/31/79	3/27/79				rall 02													4	changes une to retative adjustments and change	awar
STORY TRANSIT BUSES	DATE OF FIRST DELIVERY		1/27/79	12/27/78	4/78	5/14/81	10/78	5/78	2//9 1/78	10/19/81	7/78	6/29/81	10/78	5/78	1/27/79			Co. 107										2/19/82				* As of March 15, 1982		orders subsequent to
TABLE 2 PROCUREMENT HISTORY ON U.S. ARTICULATED TRANS	NO. OF BUSES/ LENGTH		10/55'	20/55*	30/60	15/60	20/60	30/60	20/551	87/60'	45/60'	10/60	10/60'	151/60'	43/55	511		1,61,601	125/55	89/60	15/60	10/60*	62/60'	$15/60^{1}$	30/55*	15/60'	10/60'	202/60	32/60	41/60	042			
	MANUFACTURER		M.A.N.	M.A.N.	M.A.N.	Crown-Ikarus	M.A.N.	M A N	M.A.N.	Crown-Ikarus	M.A.N.	Crown-Ikarus	M.A.N.	M.A.N.	M.A.N.			Neon lan	M.A.N.	M.A.N.	M.A.N.	M.A.N.	M.A.N.	M.A.N.	M.A.N.	M.A.N.	Crown-Ikarus	M.A.N.	M.A.N.	M.A.N.				
	DATE OF AWARD		9/24/76	2/14/77	8/27/76	11/8/19	8/3U/76 9/07/76	10/12/76	2/28/77	4/14/80	8/30/76	4/22/80	9/8/76	8/31/76	9/20/76			8/81	10/80	7/81	7/81	7/81	8/81	7/81	7/81	7/81	10/81	08/5	0/01	0/01				
	PURCHASING CITY	DELIVERED	Atlanta - MARTA		Los Angeles - SCRTD		Minneapoils - Mic Dabland - AC Traneft	Phoentx - PTS	Pittsburgh- PA Transit	Portland, OR - TRI-MET	San Diego - SDTC	San Mateo, CA - Sam Trans	San Rafael - GGBHTD	Seattle - METRO	Washington, DC - WMATA		RECENT AWARDS	Atlanta - MABTA		Denver - RTD	Indianapolis - IPTC	Memphis - MATA	Minneapolis - MTC	Nashville - KTRANS	4	1	San Jose - SCCTD	Seattle - METKU		westchester County, NI				

N/A = Not Applicable

All of the vehicles delivered to date have been manufacturered by one of two companies - Maschinenfabrik Augsburg-Nuernberg (M.A.N.), West Germany or Ikarus Body and Coach, Hungary.

M.A.N. originally participated in a joint venture with AM General whereby a "driveable shell" was manufactured in Germany and delivered to the U.S. where AM General completed the fabrication to the buyer's specification. This joint venture was terminated by AM General after the 1976 Consortium buy and the first Seattle Metro order. As of January, 1982, the parts supply network came directly under the new M.A.N. Truck and Bus Corp., headquartered in Southfield, MI. In October, 1981, M.A.N. officially opened its manufacturing plant in Cleveland, N.C. Current order backlog of more than 630 articulated buses ensure the plant's production through 1983.

Ikarus Bus and Coach has had and continues to have production arrangements with Crown Coach Corp., Los Angeles, CA. Crown similarly, receives driveable bus shells, expect that these vehicles have already been fitted with U.S. driveline components shipped to Budapest by Crown. After shipment to the U.S., Crown installs such hardware as air conditioning, windows, seating interior trim, body insulation, floor covering, interior lighting, standchions, destination signs, wheelchair lifts, paint, etc. On various future orders Crown is planning domestic installation of engines, axles, transmission, driveshafts and steering, as well.

Neoplan USA Corp. is the newest producer to win an award for articulated buses. Neoplan too will use a combination of a bus shell produced at its parent company's plant in Germany and final fabrication at the new U.S. site in Lamar, CO. Eventually, when the production capacity of the U.S. manufacturing plant increases, Neoplan may manufacture the complete vehicle as it does with the standard 40 foot coach.

All of the bus deliveries to date have involved extensive fabrication in Europe prior to shipment to the U.S. For this and other reasons the delivery time has been quite long. The average length of time from contract award to delivery of the first bus has been about 22 months with delivery time varying from 14 to 28 months. This time should decrease since:

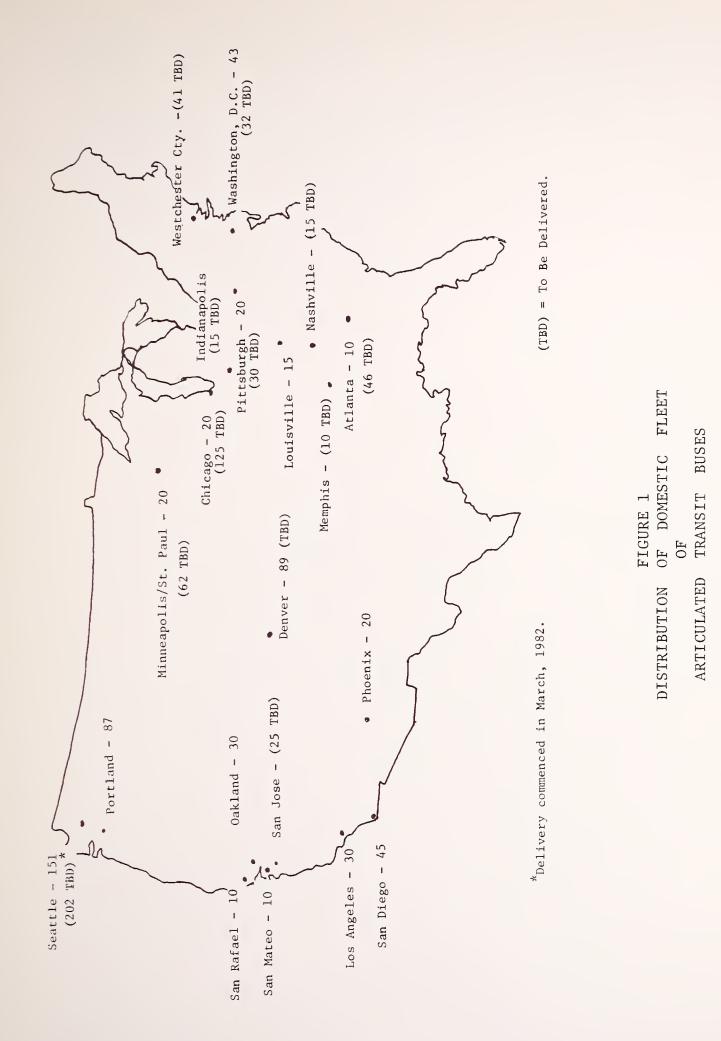
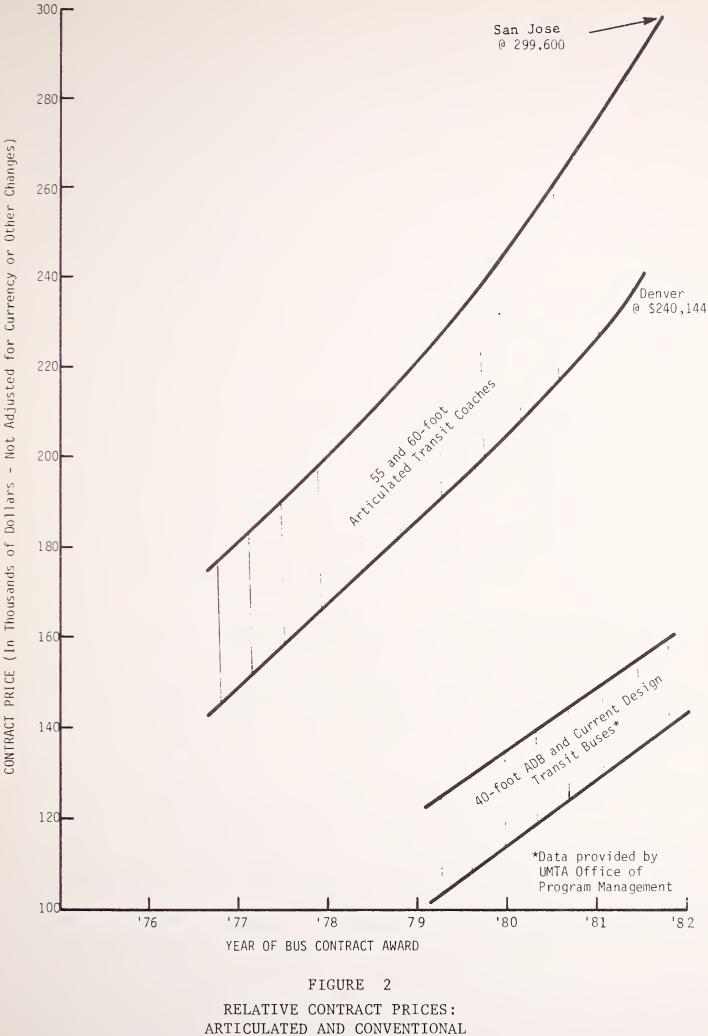

- Properties and vehicle producers are gaining experience in what can be specified and what can be offered.
- o Currently two U.S. producers (M.A.N. and Neoplan) are operating manufacturing facilities in this country (General Motors would make the third firm).
- M.A.N. and Neoplan can rely on their parent company, if the situation warrants, to produce driveable bus shells in parallel to production here.

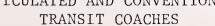
Table 2 also shows that six of the original fourteen properties who now operate articulated buses are procuring more vehicles. In each case except for WMATA in Washington, DC, the properties have ordered more than their original order.

The geographical distribution of articulated bus deliveries and orders is shown in Figure 1. Clearly, the mid-west and far-west dominate in total numbers with Seattle, Portland, and Denver by themselves accounting for almost 44 percent of known current and future orders. However, most regions of the country are represented, although the numbers in some locations may be small.

Additional locations actively pursuing the purchase of articulated transit buses include:

- Milwaukee, WI bid solicitation out for 40 units, no lifts, with a/c;
- New York Consortium of Albany (3 units), Syracuse (12 units) and Rochester;
- Detroit, MI (SEMTA) bid solicitation out for 14 units with wheelchair lifts;
- Jacksonville, FL bid solicitation out for 6 units with option for 4 more;




11/12

Other transit locations with more or less firm plans for acquisition of articulated transit buses include:

- Newark, NJ for 117 units plus option for 100 more;
- o Portland, OR for 87 units;
- o Los Angeles, CA for 30 units;
- o Chicago, IL for 100 units;
- o San Antonio, TX for 20 units;
- o Phoenix, AR for 15 units;
- o Cleveland, OH in planning;
- o Honolulu, HI for 15 units;
- o San Francisco, CA for 50 units plus an option for 50 more;
- o Providence, RI for 5 units;
- o El Paso, TX for 5 units.

All articulated buses contracted for to date have used Federal (UMTA) subsidy together with state and local participation. The total purchase amount expended for buses already delivered is about \$100 million. An additional amount of approximately \$200 million will be required to pay for new bus orders. Figure 2 graphically depicts the increase in capital cost over the past six years associated with domestic purchases of articulated buses. A corresponding increase is also shown for prices paid for 40-foot Advanced Design Buses (ADB) and "newlooks". The broad range of prices indicated in these curves is the result of numerous factors, including the extent and cost of options ordered, the number of buses ordered, the extent of "design" rather than performance contained in the bid specification, and, possibly, even the reputation of the property for exceptionally tough inspections and extensive warranty claims. From this chart it can be seen that the average cost today for an articulated order would be in the \$275,000 range.

.

A comparison of the capital costs of articulated vs. standard 40-foot buses Using a current average cost of \$160 thousand for a can be misleading. 40-foot coach, the capital cost per seat computes to about \$3,400 for the standard-size coach and about \$3,900 for the articulated bus. However, to completely understand the tradeoffs and the potential benefits of articulated buses, direct operating costs over the useful life must be compared. Τo justify procurement of articulated buses, transit properties have analyzed potential cost savings that could result from substituting articulated buses for standard-size vehicles. To perform this comparison, properties have identified the number of bus hours per day which could be saved using This is obviously closely tied to specific routes. articulated buses. patronage, service levels and labor and fringe benefit costs. Viewing the justification on the basis of savings caused by substitution implies some associated headway increases and schedule changes as well. Other properties have argued that since their existing bus capacity is inadequate and people are being left at the bus stops, deployment of articulated buses, with its large capacity, appears to be the most cost-effective manner to capture unsatisfied passenger demands. Although both reasons for procuring articulated buses (operating cost savings from substitution and ridership increase) appear logical, there has been little documented to indicate the magnitude of the apparent benefits.

Figure 3 graphically shows the characteristics of the articulated bus market in the U.S. At best, it has been sporadic. After an initially flurry of orders in 1976 little occurred until 1980. The only optimistic trend is two strong years of bus orders in 1980 and 1981 and potentially a good year in 1982.

3.2 Future Trends in Articulated Bus Deployment

The transit bus market, in general, has always been difficult to forcast. It is heavily influenced if not controlled by the level of Federal capital subsidy. Although hard to quantify, the market appears to be adversely affected by Federal requirements, such as the past mandate of full

17 / 18

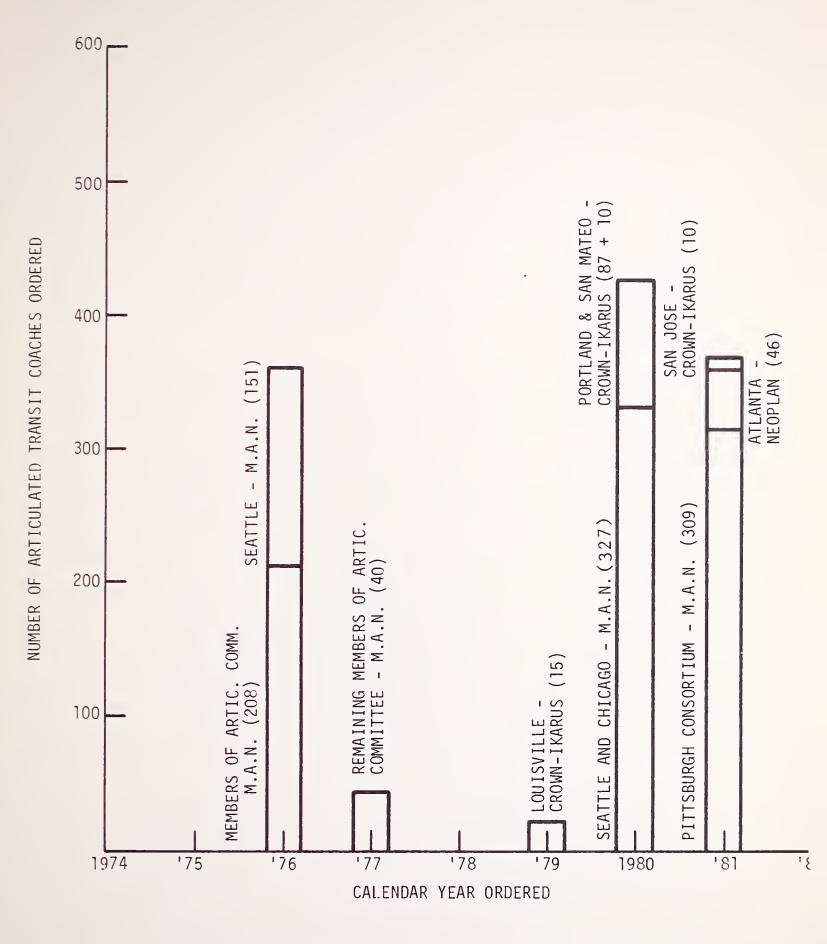


FIGURE 3. CHARACTERISTICS OF THE ARTICULATED BUS MARKET IN THE U.S.

19/20

accessibility for mobility-impaired. Transit properties often take a "wait-and'see" attitude, such that when a new mandate is issued many properties may delay bid solicitations until the procedure and potential impacts are clear. For these and other reasons, the market for transit buses in general is erratic. Orders for 35 and 40 foot coaches totalled about 3000 vehicles for calendar year 1981, while for 1980 the total was slightly less than 2000 vehicles.

The articulated bus market, as evidenced by the data presented in Figure 3, appears to suffer the same problem of unpredictability. However, there are indications that in the future the articulated bus market could be stable and vigorous. This is based on current trends in urban characteristics, as well as recent actions by the vehicle supply industry.

The use of articulated buses in the U.S. for either urban or intercity transit was strongly influenced by the apparently favorable experiences in European deployments. For a number of reasons, including higher fuel and auto prices. different trip patterns in the urban area, urban population and population density, and a greater commitment to public transportation, numerous foreign cities have expanded the use of high-capacity vehicles to where, in many cases, they represent a significant portion of their fleet. To date the economic, social and political structure of the U.S. and its cities have not reached that of Europe. It is doubtful that Mass Transit in the U.S. will ever come close to achieving the share of ridership common in foreign cities. However, there are indications in current trends in urban characteristics, such as increasing population of some cities, fewer auto sales and increasing public transit consciousness, that some U.S. cities could approach, as an upper bound, similar fleet mixes and characterisites as similar-sized European cities.

In addition, there have been some recent activities that indicate that the market for articulated buses will continue to grow.

- Construction of the M.A.N. Truck and Bus Corp. manufacturing facilities in Cleveland, NC, requiring an investment of approximately \$13 million. Production capacity will soon be about 400 buses/yr.
- Development of an articulated transit coach by the GMC, Truck and Coach Division. Furthermore, statements by Division General Manager,
 R. W. Truxell, indicate that he perceives a market of up to 650 units/year later in this decade (Automotive News, 10-12-81).
- o Active marketing of their articulated bus by Neoplan USA.
- Demonstrations, displays and short-term loans of M.A.N. articulated buses throughout the country to introduce the new technology to transit personnel and the riding public.
- o Plans by Scania of America to introduce and demonstrate their articulated bus during the Summer of 1982.
- o Agreement to demonstrate the DAC articulated bus (1 or 2 units) from Rumania at Metropolitan Suburban Bus Authority, NY.
- o Agreement to demonstrate one or two units of the Magirus-Deutz articulated bus at PA Transit in Pittsburgh in the Spring of 1982.
- o The decision by General Motors of Canada Limited in the late 1970's to develop an articulated transit bus and production and sale of 53 units to Ministry of Transportation and Communications Division of the Government of Ontario.

These activities suggest that the vehicle supply industry has already begun to stimulate U.S. transit properties. The marketing intensity and responsiveness of the supply industry, together with economic, social and political changes will, to a large degree, control the future demand for articulated transit buses.

4.0 GENERAL CHARACTERISTICS OF ARTICULATED BUS TECHNOLOGY

This section provides information on design characteristics and fabrication techniques of representative articulated transit coaches of both domestic and foreign manufacture. The depth of technical detail is structured to provide. at a minimum, a good working-level understanding of the technology of articulated buses for those in the transit community who are currently unfamiliar with this type of transit vehicle. Some basic understanding of standard-size transit buses is assumed so that in most instances the design characteristics discussed here are primarily those peculiar to articulated transit buses. The information in this section was obtained from discussions with numerous manufacturers, review of existing articles and review of manufacturer's brochures. A list of representative North American and European manufacturers of articulated vehicles is provided in Appendix A. The discussion in this section is supplemented by vehicle-specific specification and performance data provided in Appendix B. Additional design characteristics, directly related to operational or maintenance problems experienced early-on by the transit properties, are contained in the following sections, as well.

4.1 Profiles of Domestic Manufacturers of Articulated Buses

Currently there are three domestic articulated bus manufactuers:

- 1) Crown Coach Corporation;
- 2) M.A.N. Truck and Bus Corp., and
- 3) Neoplan U.S.A.

Since these companies form the articulated bus supply industry in this country at this time (GMC is not currently in production), it is worthwhile to understand a little of the background and structure of these companies and their European affiliations.

Excerpted from "Entry and Competition in the Transit Bus Manufacturing Industry", Weiers and Rossetti, U.S. DOT, Transportation Systems Center, March, 1982.

Crown Coach Corp. of Los Angeles, CA has been a builder of transit-type school buses for well over 40 years. The company diversified in the 1950's to produce firetrucks and intercity coaches. Seeking growth opportunities, the company has recently entered into a joint venture with Ikarus Body and Coach Works, Budapest, Hungary, to produce articulated transit buses. The design is derived from the Ikarus articulated bus and Crown uses Ikarus as a subcontractor supplying various body parts. By using U.S. built components throughout, Crown has attempted to differentiate its bus from its principle competition, M.A.N., which uses a German engine, transmission, etc. Ikarus is one of the world's largest producers of transit buses and of large, integral construction buses in general. The company's annual production of buses is over 13,000, including some 1500 articulated transit buses. The phenomenal size of Ikarus as a bus producer is the result of planned specialization in motor vehicle production among the communist countries of Eastern Europe, wherein Hungary is permitted a virtual monoply in production of large buses.

M.A.N. Truck and Bus Corp., established in 1980, is a subsidiary of M.A.N. The headquarters are in Southfield, MI, and the manufacturing facilities, opened in October, 1981, are located in Cleveland, NC. In a joint venture with AM General, M.A.N. successfully bid on two major orders for articulated buses in 1976. The parent company is a deversified West German engineering firm whose business encompasses major civil engineering projects as well as truck and bus manufacturing. In motor vehicle manufacturing the company has concentrated on medium and heavy-duty vehicles and diesel engines.

Neoplan USA is a subsidiary of Gottlob Auwarter GmbH and Co. (otherwise known as Neoplan), a West German firm specializing in building intercity, transit and special purpose buses. The U.S. manufacturing plant is located in Lamar, CO. The plant was designed for the capability of small, standard articulated or doubledecker bus manufacture.

In 1976, Neoplan licensed the Gillig Corporation to build a medium-sized transit bus design. That venture was ended in 1978 when Gillig ceased production of the Neoplan buses. Neoplan built its first integral construction bus in 1953 and today builds only integral construction buses. The company produces about 1100 buses per year in Germany with about 60% of its German output exported and with licensed production in several countries.

4.2 Manufacturing Techniques

There are several articulated bus production practices which influence availability, purchasing policy and often design features or options. Some of the manufacturing terminology, such as "chassis builder" or "integral body", have appeared already in the text. This section identifies and describes the major production methods.

<u>Bus chassis builders</u>, such as Volvo and Saab-Scania concentrate on the chassis construction and leave the superstructure work to specialized bus coach builders. Typically the chassis consists of a welded steel structure, generally made from box shaped frame members. The design of the chassis includes a complete propulsion system, and all axles suspension systems, steering units, brakes, and brake retarders, fuel tanks and electrical equipment. All that is needed to drive the chassis away would be a seat for the operator. Two examples of chassis design are provided in Figure 4. The top figure is a Volvo B10M chassis with the engine between the first and second axle. The second example is a Scania BR 112A chassis with the engine aft of the third axle.

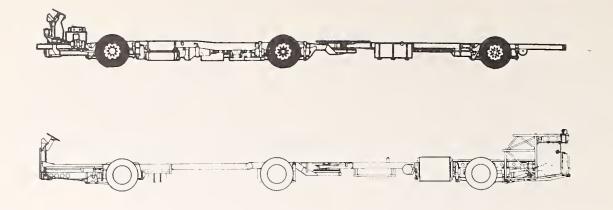


FIGURE 4 REPRESENTATIVE BUS CHASSIS

<u>Coach builders</u>, such as Lex, Hess and Van Hool, purchase the chassis from major chassis builders and fabricate the bus body to the buyer's specifications. One major benefit of the body-onchassis construction method is that body fabrication has unusual design freedom to put in wide doors, extra doors, large windows, etc., since the chassis provides much of the rigidity and structural strength.

Major vehicle builders, such as Daimber-Benz, M.A.N. and Leland, construct the coachwork on their own proprietary chassis.

<u>Integral-design coach builders</u>, such as Neoplan, Ikarus and Vetter, produce the vehicle from the ground up and are likely to be able to supply "special vehicles or construct coachwork on any given chassis. In contrast to the body-on-chassis design bus the integral-design bus is usually designed so that structural stress is borne by the bus body itself and the chassis components are mounted to the body.

Regardless of the construction technique used the external size and contour of the articulated coach have been dictated by a combination of political/legal constraints, physical limitations, and human engineering.

Generally speaking, the overall length and width are governed by legal tolerances. Therefore, the vehicle always maximizes its floor plan or

"footprint" to utilize the greatest available area. Lengths vary from 55 feet to 60 feet (61' for GMC). In general, these dimensions compare favorably with European practices. Standard width overseas is 98.4 inches while U.S. cities have progressively increased the allowable width from 96 inches to the currently popular width of 102 inches.

Inasmuch as the overall height is always well within allowable limits, it becomes a variable sensitive only to floor height and desired headroom.

4.3 Propulsion Configuration

Many different types of articulated buses have been developed over the years. The principal classes are illustrated below according to propulsion configuration.

Type Unique Characteristics

- 1 Front-end, horizontal under floor axial engine with the second axle powered.
- 2 Vertical front engine with second axle powered.
- 3 Side mounted engine with second axle powered.
- 4 Transverse rear engine with third axle powered.
- 5 Transverse rear engine with second axle powered.
- 6 Transverse rear engine with second and third axle powered.

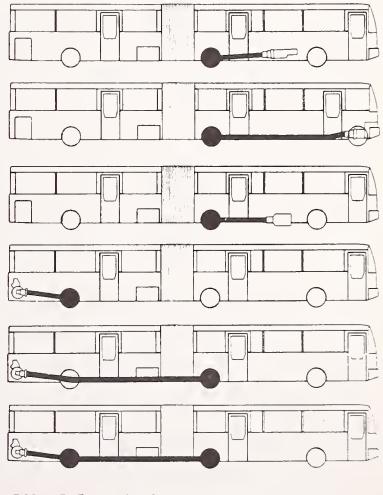


FIGURE 5 PROPULSION CONFIGURATIONS

Type 1, the front-end, horizontal, under-floor engine type, has been the most popular arrangement in articulated transit buses because:

- a. The first articulated transit bus consisted simply of a trailer attached to a standard 35' transit bus; and
- b. coachbuilders could build up from any standard chassis without major modifications.

Current users of this design using their own chassis include Ikarus, Leyland, M.A.N., Volvo, and Vetter. Current users on chassis purchased from another manufacturer include:

- a. D.A.C., Graef & Stiff, and Portesi each using a M.A.N. chassis;
- b. Den Oudsten, Heuliez and Lex each using a Daimler Benz chassis; and
 c. Hess and Haglund each using a Volvo chassis.

Manufacturer-reported advantages are that the joint mechanism is simple, the dynamics during acceleration are better, there is less tendency to jackknife than with a rear-mounted engine, and the distribution of weight is more even among the three axles.

Type 2, the vertical front engine type with second axle powered, is another configuration to convert a conventional bus to a compound chassis design. Currents users of this design are merely using the front-engine vehicle as a traction unit to tow a separate trailer section.

Type 3, side-mounted engine with second axle powered, is currently limited to one manufacturer, Van Hool. The advantages are similar to those associated with type 1 configuration but without the floor height constraints of an underfloor engine.

Type 4, the transverse rear engine with third axle powered, is a relatively new design configuration. Current users on proprietary chassis include Daimler-Benz, General Motors of Canada, GMC Truck and Coach, Neoplan,

Saab-Scania, and Steyr-Daimler-Puch. Other users for coachbuilding on a purchased chassis are DeSimon on a Fiat chassis and Heuliez or Lex on a Daimler-Benz chassis. Reportedly, this design configuration provides greater traction, more effective braking (especially in slippery conditions), easier engine maintenance, isolated engine noise and pollution, low floor potential and more flexibility in body design. From a standpoint of familiarity, maintenance personnel in the transit industry have been working on rear engine, transverse-mounted propulsion systems for years.

Type 5, the transverse rear engine type with second axle powered, is currently used by Magirus Deutz and Graef & Stift. Manufacturers claim this configuration provides the dynamics of the type 1 design and with potential for low floor.

Type 6, the transverse rear engine type with second and third axle powered, is currently only used by Renault. Alleged advantages are a combination of those of type 1 and 4 configurations, particularly claims of superior traction in all driving conditions stability, engine accessibility, potential for low floor height and capability of accomodating up to 4 passenger doors.

4.4 Articulated Bus Capacity

Articulated buses have proven to be a practical way of increasing transportation capacity, without increasing the number of personnel and, reportedly, having almost the same operating costs as two-axle buses. The passenger carrying capacity can be increased over that of a conventional 40-foot bus by 50% to 75%.

For the purpose of this discussion the capacity of the articulated bus is the total number of seated and standing passengers at the point when additional boardings are denied. There are a number of factors, such as passenger "bunching" near the doors, seat widths, or amount of carry-on luggage, that can influence the apparent or actual capacity of the transit coach. Therefore, estimates of capacity, provided in Table 3, are provided as a range of values rather than one absolute number.

		TABLE 3	
	Comparison of	Passenger Capacities *	
	** Maximum No. of Seats	*** Approximate No. of Standees	Estimate of Total Capaci'y
60-foot Articulated	71–76	50-55	121–131
55-foot Articulated	65–68	45-48	110-116
40-foot Coach	46-53	33-38	79–91
35-foot Coach	38-41	22-25	60-66

* Data obtained from manufacturer's literature and brochures.

** Estimates exclude wheelchair provisions.

*** Crush loadings may result in higher capacities.

This table illustrates the general rule of thumb that passenger capacity is proportional to the length of the vehicle. A 60-foot articulated bus generally has one and one half times the capacity of a 40-foot conventional coach. Seated capacity (intuitively) is also proportional to vehicle length.

Other studies have compared capacities on the basis of allocating a certain amount of square feet for each standee. Table 4 is a recent example. As this table again demonstrates, the relative capacities are proportional to the vehicle length.

		0 2.8 sq. ft. Per Standee		0 3.4 sq. 1 Per Standee		@ 4.3 sq. ft. Per Standee			
	Se	ats	Standees	Seats Star	ndees	Seats	Standees		
M.A.N. 60-foot Artic.		71	53	71	44	71	35		
M.A.N. 55-foot Artic.		65	44	65	37	65	29		
Conv'l 40-foot		50	30	50	25	50	20		
*"Articulated	Bus	Eval	luation".	Transportation	Systems	Center.	US/DOT.		

Relative Capacities of Articulated and Conventional Buses At Equal Passenger Comfort Levels

TABLE 4

*"Articulated Bus Evaluation", Transportation Systems Center, US/DOT, Staff Study #243-U. 3-209, Albright et al, Dec., 1981.

4.5 Manueverability/Handling

An articulated bus is, of course, longer (see Figure 6), so the driver has to take this into consideration. But other operating characteristics, such as instrumentation, fittings, controls, etc., may be more or less the same for an entire fleet.

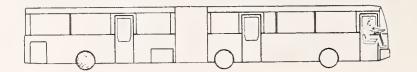


FIGURE 6 RELATIVE BUS SIZES

The geometry of the articulated bus requires special attention, i.e., extensive training of new personnel, to promote safe handling of the bus. Drivers, terminal and workshop personnel typically prefer a type of articulated bus that can be operated in the same places, and use the same stops, as two-axle buses. This should be feasible without any special supervision of bus movements. Safety wise, it is also important that the sweep area is the least possible when cornering, changing lanes, pulling in or out of bus stops, bearing in mind surrounding traffic, pedestrains, and obstacles.

In a geometrical sense, it is important to differentiate between articulated buses with a <u>steered rear axle</u> and those with a <u>rigid rear axle</u>. When utilizing a rear engine with the third axle powered, that axle must be rigid.

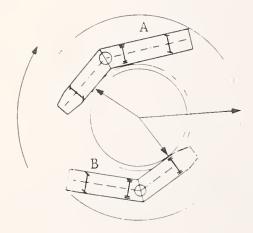


FIGURE 7 TURNING ENVELOPE

Therefore, for that type of bus the geometry of turns is fixed. The sketch below shows two articulated buses in a full right turn. Bus A has a steerable axle (similar to M.A.N. vehicles). The turning envelope or sweep is the area inside the outer two circles. Bus B with a fixed rear axle requires a larger turning envelope to complete a turn.

Clearly, the advantage offered by an articulated bus with a steered rear axle is a smaller sweep width. However, the difference may be less than 3 feet.

The turning envelope of an articulated bus shown in the previous sketch emphasized the "tracking" feature of the rear steerable axle, such that the wheel on the inside of the turn will not climb over the curb. However, the geometry of these vehicles affects the rear swing out of the bus, as well. An articulated bus with a steered rear axle has a drawback in that the rear section sweeps over the curb when the bus pulls sharply out from the bus stop. This oversweep, shown in Figure 8, generally does not exceed 4 feet (1.2M) and may be partially compensated for by tapering the rear coachwork corners or adjusting the steering system.

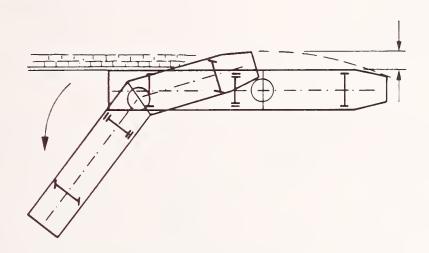


FIGURE 8 SWING-OUT WITH STEERED REAR AXLE

With a fixed rear axle, the oversweep is equivalent to that of a two axle bus.

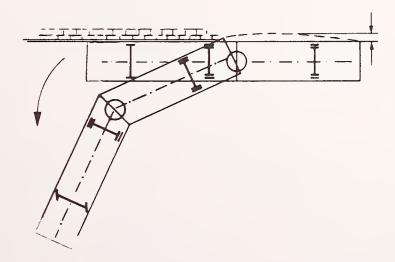


FIGURE 9 SWING-OUT WITH FIXED REAR AXLE

Another performance specification, that affects maneuverability, in addition to the sweep and the swing-out dimension, is the radius of the turning circle to the outside corner of the vehicle. Operation in narrow, congested streets in U.S. urban areas requires a relatively small turning radius.

Turning radii for a few articulated and standard size buses are shown below for comparison.

TABLE 5 REPRESENTATIVE TURNING RADII

Vehicle Designation	Turning Radius to Body Corner							
Articulated								
Crown-Ikarus 286	40 '							
M.A.N. SG220-16.5	41'5"							
AB Volvo B10M	39'4"							
Standard-Size								
Gillig Phantom (35'LOA)	35 '							
Gen. Motors of Can. T6H5307N	42 * 3 **							
Flyer Ind. D901	42 '							
Flxible 870	43 '.6"							
Gen. Motors of Can. T6H5307N Flyer Ind. D901	42 ' 3" 42'							

Operating the articulated bus with a fixed rear axle in reverse is much like operating a tractor trailer truck. However, training in operating the steerable rear axle bus in reverse is required since the rear wheels turn the opposite way from the front axle.

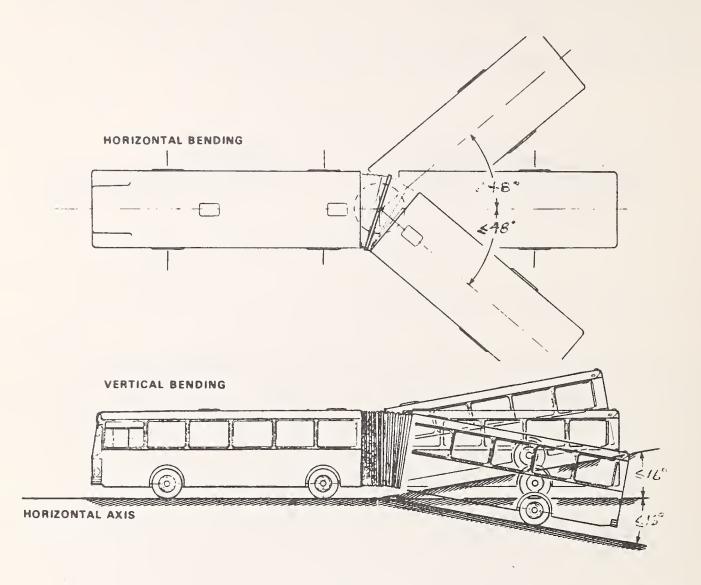
In a similar way driver training is required for operating the vehicle at highway speeds. Although the problem may be worse with the steerable rear axle design, since, again, a right turn movement of steering wheel causes the rear section to swing to the left, special training at expessway speeds is required for all articulated buses to minimize or eliminate unnecessary sway of the rear section.

The articulated bus has the ability to negotiate hills, ramps and abrupt changes of grades. The bending of the vehicle in the vertical plane permits the articulated bus to perform as well as a shorter vehicle when operating on

ramps. Approach and departure angles of the vehicle must be considered, similar to conventional buses, to prevent "bottoming out". A problem may occur when the vehicle must navigate successive ramps or grade changes in a short distance as shown in the examples in Figure 10. Operators should be instructed that these road profiles must be handled slowly and at non-90[°] crossing angles to minimize ground contact.

FIGURE 10 ARTICULATED BUS OPERATION ON RAMPS

4.6 Braking and Weight Distribution


The weight distribution on an articulated bus is arranged so that the drive wheels have sufficient tractive force for good distribution of the braking force. It must be possible to use the brake retarder without running the risk of jackknifing on slippery roads. For this reason many articulated bus designs provide a retarder on/off control for the driver.

When braking, it is advantageous to have the greatest axle load distribution at the rear. Furthermore, when the third axle is powered, there is an advantage in that the gearbox retarder works on the third axle. Each manufacturer uses different methods of controlling stability and reducing the chance of jackknifing.

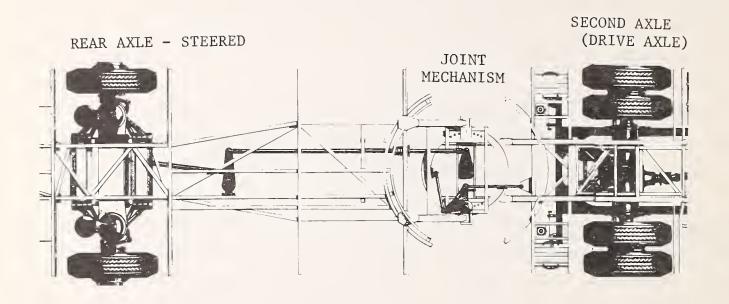
4.7 Articulated Joint

The design of the joint mechanism or pivot apparatus is unique to the articulated bus. It is different from the design found in tractor-trailer rigs even though similar terminology may be used. Current designs of articulated joints permit relative movement in the horizontal plane of up to 48 degrees from either side of the vehicle centerline and as much as ± 16

degrees of vertical movement. Figure 11 illustrates the possible yaw and pitch movements of the trailer section relative to the forward section of the bus.

FIGURE 11 RELATIVE MOVEMENT OF ARTICULATED JOINT

Generally, motion about the third axis, or relative tortional movement of the trailer section is not permitted in the articulated joint. Instead, this motion is absorbed in the suspension system and the structure of the bus itself. In addition to forming a permanent, two-degree-of-freedom connection between the front and rear sections, the articulated joint must permit free interior movement, as well as fore-and-aft visibility.


Most manufacturers rely on a double universal joint to achieve the aforementioned tortional integrity. There are, of course, other mechanical links available to achieve similar results. For example, Volvo with its engine between the first and second axle (pulling the trailer section) uses a 33.5 inch diameter bearing or slew ring. Inasmuch as the universal joint or slew ring permits unobstructed lateral movement of the trailer in relation to the tractor, some supplementary means is often incorporated to prohibit uncontrolled, excessive motion, such as might occur during a skid, jackknifing, or over-rotation. Since these behavioral characteristics are directly related to the body type, location of the propulsion system and the axle being driven, the design and function of the articulation joint should be discussed in terms of the configuration types as previously listed.

Types 1, 2, and 3 buses are characterized by conventional tractor-trailer behavioral dynamics wherein the traction vehicle has its greatest weight over the driven axle while towing a trailing section having either a steerable or fixed axle. Since the trailer is the lightest body segment, the tendency is toward over-rotation of the trailer resulting in a whipping or pendulum action as opposed to jackknifing commonly found in the tractor-trailer relationship in trucking.

The M.A.N. concept is somewhat similar to the articulation manufactured by Robert Schenk GmbH wherein the tractor frame is dropped to accommodate a transverse pivot pin supporting a slew ring. Thus, the pivot pin permits pitching while the slew ring allows yawing and the combined stability of the three elements prohibits rolling of tractor relation to the trailer. In the situation where the rear axle is being "steered", adjustable connecting rods calibrate the steering angle in direct proportion to the turntable turning angle relative to the tractor.

In this type vehicle, anti-jackknifing controls are not considered necessary. However, vehicles, such as the Crown-Ikarus 286, do employ controls to lock

brakes if the tractor-trailer angle exceeds a prescribed tolerance measured at the slew ring in the articulation. An articulation joint and steerable rear axle schematic are provided in figure 12.

FIGURE 12 M.A.N. CHASSIS

<u>Type 4 buses</u>, rear engine with third axle powered, commonly called "pushers", introduce a new set of dynamics. Having the greatest concentration of mass behind the rear axle, jackknifing became a real threat. Confronted with this problem, each manufacturer either developed his own solution or acquired by purchase or license a suitable device having the proper capabilities. For example:

- Daimler-Benz developed an electronically controlled system of hydraulic dampers with dual functions: (1) to keep the vehicle "tracking"; and (2) on command of the electronic control, lock the joint to form a rigid unit of the tractor and trailer.
- o Scania uses the Schenk design joint and depends upon electronic logic to monitor bending speeds, acceleration, and axle revolution, as well

as to emit an impulse to instantaneously command the throttle, brakes, and fold absorbers to control jackknifing or fishtailing.

- o General Motors, Truck and Coach Division, elected to strive for simplicity through the use of a totally mechanical coupling system and air bellows to provide controlled articulation and directional stability with automatic wheel lock controls.
- General Motors of Canada Limited uses a Schultz design articulated joint with automatic, anti-jackknife protective controls.
- Neoplan uses the Schenk design for the articulated joint. The Schenk is basically a turntable having brake-stabilizing shock absorbers dampen rear axle motion. On cornering, the angle between tractor and trailer is stiffened and controlled by airbrakes operated through four sensors. If the bus tends toward jackknifing a high volume dampening cylinder is pneumatically locked to resist further deformation until the vehicle's linear movement is restored.

<u>Type 5 buses</u> are compromised of the rear engine with forward traction. Concerned about the jackknifing tendency of the rear engine driving the rear axle, builders such as Magirus-Deutz or Graef and Stift extended the drive shaft through the articulation by means of universal joints and used stateof-the-art skid or fold control devices.

<u>Type 6 buses</u>, such as the Renault PR180, are designed to enjoy the best features of all the aforementioned types. That is, the rear engine eliminates the body design constraints imposed by the underfloor engine, while the power supply to both axles is intended to assure the most favorable dynamic characteristics of the vehicle from the standpoints of inertial forces, traction, anti-skid, and control of jackknifing or fishtailing. Figure 13 shows the Renault chassis with both the second and rear axles being driven.

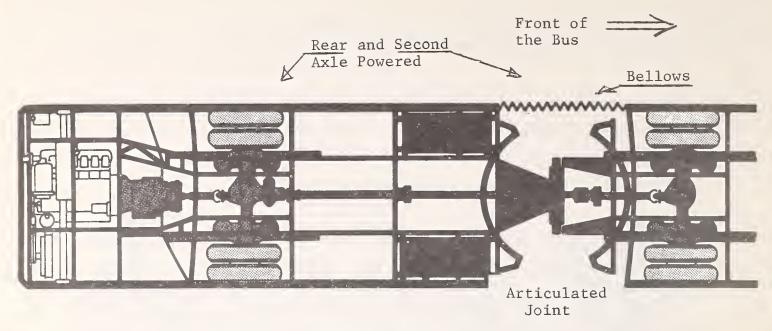


FIGURE 13 RENAULT CHASSIS

Two other elements are associated with the joint itself. They are the turntable and the bellows.

The turntable is a flat disc employed in the floor over the joint. It is generally hinged across the center to permit compliance with the floor of each section of the bus.

The bellows generally are fabricated from abrasion and tear-resistent, flame-retardant, Hypalon-coated, laminated, polyester fabric having a high degree of dimensional stability to impart rigidity and self-supporting characteristics. Interior appearance of the bellows resembles the exterior appearance with exceptions created by functional or cosmetic treatment such as handrails, seats, modesty panels, acoustical or insulating curtain, seals and ducts.

4.8 Miscellaneous Design Characteristics

Except for the design characteristics discussed in the previous sections of this report, the majority of technology found in the articulated transit bus also appears in standard coaches. Items, such as suspension, gearbox, axles, brakes, engines, transmissions and front steering gear, are generally not unique to articulated buses. However, a few design characteristics that potentially could differ from the conventional 40-foot coach, remain to be

discussed.

4.8.1 Door Width

The principal advantage of the articulated bus relates to its ability to accommodate large numbers of passengers. To assure rapid access and egress, a door should be wide enough to permit passage two abreast. Most manufacturers offer optional widths up to 50 inches. Some vehicles, such as the GMC coach, have front door size limitations due to the reduced front overhang or styling constraints. To realize the full benefits of wide doors on articulated buses an appropriate fare collection policy and procedure must be determined.

4.8.2 Step Heights

Step height standards show only minor variations. The first step at the front of the vehicle varies according to manufacturer from 13 inches to 15 inches. Bus "Kneeling" systems could lower this even more. The first step at rear doors is generally lower where it is not necessary to contend with the approach angle necessary at the front of the vehicle. Succeeding steps vary from 5.5 to 14 inches.

4.8.3 Kneeling Capability

Inasmuch as the kneeling capability has only been a choice of American cities, it is only found on American articulated buses influenced by the American market. Here, the greatest height differential is found on the GMC articulated bus where the first step height can be reduced from 13 inches to 8 inches, utilizing controls of the front side air suspension system.

4.8.4 Interior Headroom

The articulated bus is not subjected to overall height constraints so the interior headroom becomes an option of the buyer or builder. Headroom in the buses studied varies from 79 inches to 91.5 inches. However, actual experience demonstrates interior fixtures generally produce clearances below those stated.

4.8.5 Floor Height

Floor height in the Type 1 vehicle (engine between first and second axle) is established by the height of the under-floor engine -- normally in excess of 36 inches. The other types have been developed to permit a lower floor height. However, it is interesting to note that the height difference may only be one step-riser or approximately 8 inches.

5.0 OPERATIONAL AND MAINTENANCE CHARACTERISTICS

In general, operational and maintenance experiences with articulated transit buses in this country is not extensive. As discussed in Section 3.0 only fourteen transit agencies collectively deploy about 511 articulated buses. many for only a relatively short time. To date, only two manufacturers, M.A.N. and Crown-Ikarus, have delivered buses, so the diversity of experiences is limited in vehicle design, as well. Therefore, it is important that caution be used in arriving at any conclusions based on this sample of data. However, eleven of these fourteen properties have had the vehicles for at least two years and the cumulative revenue mileage of all articulated buses is estimated at 40 million miles. Much can (and has) been stated about the operation and maintenance of articulated buses. It is worthwhile to accumulate and document this information for the benefit of others as long as those interested remain receptive to changes (hopefully improvements) that may occur in the future. Finally, summarizing this information can become difficult because of comments or data that varies or, in some instances, is contradictory. Such variation comes about because of differing maintenance philosphies. climate. topography or relationships with manufacturers. Given these cautions and qualifications the following sections address pertinent aspects of the operational and maintenance experiences of U.S. articulated transit buses.

5.1 Operational Characteristics

This section summarizes certain aspects of the operation of articulated buses in transit service that appear to be of interest to transportation departments and/or that offer some unique characteristic compared to conventional transit coach operation. The section first discusses the operational characteristics, such as fuel economy, stability, scheduling concerns, etc., and then presents in tabular format in Table 6 the specific comments of transit personnel at each property.

5.1.1 Fuel Economy

The fuel economy of articulated transit coaches appears to be relatively good, especially when the extra capacity is considered. The fuel economy data provided in the comments of Table 6 ranges from about 2.4 to 3.7 mpg for air conditioned, articulated vehicles. The variation in actual fuel economy is a function of a number of factors, including topography, ridership, and bus duty cycle. For the sake of comparison, if 3.0 mpg was a representative value for articulated buses and 3.5 mpg was a reasonable value for conventional buses, both air conditioned, the articulated bus would be about 20% more fuel efficient on a per seat-mile basis.

5.1.2 Bus Scheduling Concerns

Four major concerns appear to affect the scheduling of articulated buses in transit service. They are longer run times than conventional 40-foot buses, hill climbing ability, manueverability on narrow streets, and poor handling in slippery road conditions.

A few transit properties report approximately a 10% increase in required time for an articulated bus to complete its run over the time needed by a 40-foot coach.* Those properties using the bus on express or highway runs without many stops, however, feel the bus performs in equal or less time. The concensus of opinion appears to be that the delay occurs during the dwell time only; the bus accelerates well and easily keeps up with normal traffic. The time for which the passenger door remains open is determined by passenger loading charactersitics. The time for the door mechanics to operate is usually determined by specification, although it can be easily changed by adjusting air pressure. No property sampled seemed that alarmed by the slightly longer run time in light of other operational benefits.

Cities, such as Pittsburgh and Seattle, were concerned that the bus had some difficulty in handling steep grades under heavy loading conditions. However,

^{*}More analysis on this subject can be found in "Articulated Bus Evaluation," Albright et al, U.S. DOT, Transportation Systems Center, Report #SS-243-U.S.-209, 12/81.

this is not unique to articulated buses. Accomodations where possible had to be made in the vehicle scheduling and routing. In addition, some modifications have been made on the new M.A.N. buses now being delivered to Seattle to address this problem. These changes include:

- o an intercooled engine (as well as being turbocharged);
- o increasing the torque (and, therefore, horsepower) of the engine at relatively low rpm;
- o properly matching the rear axle ratio with engine/transmission shift points.

At least one city, Pittsburgh, felt there were some narrow routes (though not many) on which an articulated bus could not safely operate. Accordingly, some scheduling adjustments had to be made. This concern was <u>initially</u> shared by other cities, as well. Intuitively, the size of the vehicle made transportation staff feel the routing should be constrained to only wide straight routes. However, with experience this concern was tempered appreciably. Articulated buses maneuver well in city traffic and are used on a wide variety of routes and in a wide variety of operating environments.

Generally, northern cities, such as Seattle, Pittsburgh and Chicago, were concerned with "jackknifing" on slippery road conditions. Seattle, for one, would reschedule the articulated buses to operate on sanded roads only and use 40-foot buses as shuttles to bring riders to the pick-up points. Operator training and familiarity with the vehicle would also help ease this problem, the magnitude of which appears no greater than with conventional buses.

5.1.3 Stability in High Speed Operation

Some early reports claimed a certain amount of movement or "fish-tailing" in the rear section of an articulated bus during higher speed operations. This

apparently was more evident in vehicles with steerable rear axles, since a turn of the steering wheel to the right causes the rear axle to move to the left. Virtually all properties reported no current problem with instability and except for isolated cases, this has been eliminated by operator training.

5.1.4 Rear-Side "Swing-Out"

Without exception every property has experienced some <u>initial</u> problems due to the rear side swinging out during turns. The amount of swing-out beyond the side plane of the bus varies. Articulated buses with steerable axles will sweep out further than vehicles with "fixed" rear axles (see section 4.5). Transit properties are successfully overcoming this problem to where it is now no greater than with conventional 40-foot buses. They are accomplishing this in the following manner:

- Unanimously, all transit properties recognize and implement special operator training programs;
- All current orders of articulated buses (listed in Table 2) are specifying a tapered rear section. The tapered section is a standard design in Europe. This substantially reduces the swing-out and the resulting potential of contact;
- Some properties are considering adjusting the steerable rear axle to lessen the extent of swing-out;
- About half of the properties use a sign at the rear exterior of the bus to warn motorists and pedestrians that "Caution This Bus Swings Out On Turns";
- o At least one property, Seattle, is ordering rear bumpers extending on both sides around to the wheel well.

Seattle is the one property that has the most experience in operating articulated transit buses. Their fleet safety department recently completed a com-

parison study of accidents between their articulated and standard 40-foot coaches for the time period from approximately October, 1981, to February, 1982. The 151 articulated buses were involved in 92 accidents or 33.08 accidents per million miles compared to 51.70 accidents per million miles for the 885 40foot fleet. Only three of the 92 accidents involving the articulated coaches were accidents in which the tail swing was a factor.

5.1.5 Passenger Acceptance

Some measure of passenger acceptance is demonstrated by the fact that six of the original fourteen transit properties have ordered more articulated buses. Beyond that, according to comments by transit personnel, riders frequently will call and complain when the articulated bus is not assigned to their route. In Los Angeles, the business community recognized the popularity of the articulated bus and attempts were made to get and keep these buses on a certain highly commerical route. It appears safe to say that passenger acceptance has been very good.

5.1.6 Fare Collection

Fare collection policies and procedures have limited and constrained the potential benefit of articulated buses to U.S. transit operations. Except for express runs and park-and-ride services, most operations require either entrance or exit out the front door past the fare box; the full value of the wide doors and extra capacity, therefore, is not realized. At least two transit properties, TRI-MET in Portland, OR, and San Deigo, CA, will be experimenting with a self-service fare collection system starting in September, 1982. This fare collection policy relies, to a large extent, on the "honor" of the patron and thereby should permit use of all doors at each stop. Portland and San Diego offers an excellent opportunity to evaluate the full operational benefits of articulated buses in domestic service.

5.1.7 Institutional Concerns

Institutional concerns in the context of this report generally are regulatory in nature, either at a local state or even Federal level. Such regulations or ordinances may inhibit the operation of the vehicle in certain areas. Experiences to date suggest that with appropriate planning these constraints can be avoided by legislative action or waivers on an administrative level. Areas to be concerned with include:

- o Restrictions on vehicle length, multiple units, width and maximum axle weight, both locally and on interstate highways;
- o Operator licensing;
- o Bridge or tunnel restrictions;
- o Insurance coverages;
- o Emergency evacuation procedures.

				-	
	OPERATIONAL BENEFITS	 o Eliminated need for double- heading 40' buses on crowded runs. o 98% availability. o Fuel economy reported to be very good-only 8-9% less than 40-foot coaches in their fleet. 	 o Fuel economy is relatively good-comparable to conventional bus and much better than GFC 870 o Replaced two 40-foot buses with one articulated. o Stable at normal road speeds. 	 o Fuel economy comparable to GFC 870 - range of 3.5 to 3.7 mpg. o Very reliable vehicle averaging 19,000 miles between road service calls (compared to 3,000 miles for rest of fleet). o Better able to maintain schedule on express runs than conventional transit o Substitution of 1 for 2 for 100% productivity improve- ment. 	o Availablity steadily improv- ing 38 of 45 available daily for service.
RTED BY TRANSIT PERSONNEL)	EARLY PEPTORMANCE PROBLEMS	 0 10% longer run time due primarily to increased dwell time. 0 Some difficulty on hills with 0 Some voi loading 0 Excessive "swing-out" of rear of bus during turns on some artics; steering system adjustments re-duced "swing-out" and virtually eliminated associated accidents. 0 Handling is difficult in snow/ice. 	 Backing up often caused "jack-knifting" prior to improved driver training and more audible warning. Some accident damage due to rear-end swing out; considering going to different steering unit offered by manufacturer. 	 O Unusual propensity for rear side damage due to "swing-out" on turns. O 10% longer rum times than conventional vehicles in peak-hour, local service. O Insufficient power to operate heavy loads on hilly routes. 	o Performance on hilly routes not as good as conventional 40-foot bus.
(AS REPORTED BY	APPROX. PERCENTAGE OF FLEET	30	Ŷ	2	13
	NUMBER OF ARTIC'D BUSES	151 plus 202 being delivered (M.A,	10 plus 46 on order (1.A.T with coplans on order)	20 plus 62 on order (N.N	45 (^N)
	TYPE OF SERVICE FOR WHICH ARTICULATED BUSES ARE USED	<pre>o Replace peak-hour double- headers. o Suburban park-and-ride to downtown. o Now operating at all times-peak and off-peak.</pre>	o Originally on express routes. o More recently on long, heavily travelled routes with frequent stops.	o All types of routes- primarily during peak- hours.	o All types of service- peak and off-peak, over 20 hours/day.
	TRANSIT PROPERTY	Seattle, WA Seattle, WA	MARTA-Atlanta, GA	Metropolitan Transit CommMinneapolis/ St. Paul	San Diego, CA San Diego, CA

SUMMARY OF OPERATIONAL EXPERIENCES OF ARTICULATED BUSES IN U.S.

TABLE 6.

	OPERATIONAL BENEFITS	 o Demonstrating early indications of attracting significant tidership increases. o Seated capacity is 67 seats. o Three doors for faster passenger boarding/exiting on certain routes. o With the deployment of self-service fare collection system in the fall of 1982 significant operational benefits are expected with these high capacity vehicles featuring 3 wide doors. 	<pre>o More than adequate propul- sion with Cummins 350 HP engine. o Good fuel economy (3.5-4.0 mpg) o Very good passenger acceptance.</pre>	o Vehicle is capable of moving large numbers of people- maximum passenger count during 3-day period was 116.
ED BY TRANSIT PERSONNEL)	EARLY PERFORMANCE PROBLEMS	<pre>o Not in service long enough to identify performance problems. o Deployment of wheelchair lift equipment causes excessive delays (up to 8 min. per cycle).</pre>	<pre>o Propensity for rear side acci- dents due to "swing-out". o Some routes are felt to be too narrow for artic use.</pre>	 O Propensity to rear side damage due to accidents on turns. O Fuel economy is approximately 40% less than GMC (mod. 5307A) O Availability decreases from 82% to 51% during summer periods.
(AS REPORTED	APPROX. PERFORMANCE OF FLEET	13	m	1
	NUMBER OF ARTIC'D BUSES	55 or 87 Delivered (Crown-tharus)	10 (since July '81) (trown-ikatus)	30
	TYPE OF SERVICE FOR WHICH ARTICULATED BUSES ARE USED	<pre>o First artic scheduled in service 2/1/82 o One-for-one substitution without schedule change on local heavy pas- senger demand routes o Planning I for 1 1/2 sub- stitution in late spring. o Peak-hour and off-peak deployment.</pre>	o Commuter shuttle to San Francisco. o Various other routes.	o Primarily on Wilshire and Hollywood Blvd. with heavy passenger loading and congested traffic conditions. Used with 40° buses during peak-hrs. and only artics during off- peak.
	TRANSIT PROPERTY	TRI-MET-Portland, OR	San Trans-San Mateo, Mateo, CA	So. Cal.RTD-Los Angeles, CA

SUMMARY OF OPERATIONAL EXPERIENCES OF ARTICULATED BUSES IN U.S. (Continued)

TABLE 6A.

	OPERATIONAL BENEFITS	o Eliminated need for "double-heading" 40 ft. buses.	 0 Very stable mover of large masses of people. 0 Power steering is very good. 0 85-93% availability. 0 Good passenger acceptance. 	<pre>> Sufficient power to handle all loads on assigned routes. > For the size of the vehicles the fuel economy is good. WMATA tests show up to \$ mpg on express runs at curb weight. Average fuel economy is 2.4 mpg in service</pre>	<pre>o CTA has not yet experimented to measure operational/cost benefits. Well satisfied, however that the artic can be operated successfully in American transit environment. o Fuel economy has been good at about 2.6 mpg - slightly less than conventional 40- foot coaches. o Availability of artic fleet averages 18 or 19 per day out of 20 for peak-hour service.</pre>
REPORTED BY TRANSIT PERSONNEL)	EARLY PERFORMANCE PROBLEMS	 o Insufficient power to operate heavy loads on hilly routes. o 10% longer run times than conventional transit coaches. o Fuel economy is about 25% less than conventional 40-foot bus. 		o Vehicle performed well, in general.	o Reportedly up to 10% increase in run times. • o Rear side damage due to turning accidents comparable to con- ventional buses. Improving with driver familiarity.
(AS REP	APPROX. PERFORMANCE OF FLEET	S	4	4	Ŷ
	NUMBER OF ARTIC'D BUSES	20 plus 30 on order (1.1)	30 (.i)	43 plus 32 on order ^(TL.A)	20 plus 125 on order (".A)
	TYPE OF SERVICE FOR WHICH ARTICULATED BUSES ARE USED	<pre>o Heavy loads - longer routes. o Special events. o Suburban to downtown ex- press (low headway). o Additional buses planned for dedicated busways.</pre>	 o Variety of local routes. o Express routes over Bay Bridge. o Longest, slowest, local route with heavy rider- ship and high passenger turnover. o Transbay service due to temporary closing of BART. 	o Dedicated crosstown routes frequent stops, heavy traffic. o Operated all day up to 18 hours/day.	 o Initially operated on all types of routes. o Recently operated on three main arterial corridors comprised of local service and some boulevard sections. o Service for special events.
	TRANSIT PROPERTY	PA Transit- Pittsburgh, PA	AC Transit- Oakland, CA	WMATA- Washington, D.C.	CTA- Chicago, Ill.

SUMMARY OF OPERATIONAL EXPERIENCES OF ARTICULATED BUSES IN U.S. (Continued)

TABLE 68.

REPORTED BY TRANSIT PERSONNEL)	OPERATIONAL BENEFITS	<pre>o Fuel economy is good - for Jan. '82. The artic fleet averaged 3.3 mpg while the RTS fleet averaged 3.4-3.8 mpg and FLX new look averaged 3.9 mpg. o Very popular with riders. o Availability is very good now (90-100%).</pre>	 On express routes substitutions made using artics to keep number of seats/peak-hour constant; 4-5 vehicles saved during peak-hour operation on express service. O Fuel economy has been good. Average for Feb., '82 was 3.3 mpg for artics vs. 3.7 for fleet of GPC 870's. O Seventy-three seats/vehicle. 	 o Very good schedule com- pliance (98%). o Very good passenger ac- ceptance. o Fuel economy is good averaging 3.6 mpg vs. 4.9 mpg for 40-foot new looks.
	EARLY PERFORMANCE PROBLEMS	o Early vehicle instability complaints have been corrected through driver familiarity and training.	o Greater propensity for rear side damage due to "swing-out" problem than on conventional 40-foot bus.	 0 Rear side collision damage exists but is minimized with driver training. 0 Some hilly routes require additional run time.
(AS]	APPROX. PERFORMANCE OF FLEET	0	Ś	4
	NUMBER OF ARTIC'D BUSES	20	15 (man-Ikarus.)	10
	TYPE OF SERVICE FOR WHICH ARTICULATED BUSES ARE USED	o Artics are split between express runs and local service, primarily used only in peak-hour.	<pre>0 Operated on both express routes and local service out of two garages. o Peakhour service mainly although there is some use in off-peak.</pre>	o Long suburban routes-city and highway conditions; high patronage routes
	TRANSIT PROPERTY	PTA- Phoenix, AR	TARC- Louisville, KY	CGBHTD- San Rafael, CA

SUMMARY OF OPERATIONAL EXPERIENCES OF ARTICULATED BUSES IN U.S. (Continued) .TABLE 6C.

5.2 Maintenance Characteristics

This section addresses the maintenance experiences on various subsystems and components of articulated buses. In many instances, the initial frequency or severity of the particular maintenance problem was reduced appreciably as a result of increased transit staff familiarity with the technology of the bus, consistent technical assistance by the vehicle or component manufacturer and by innovative modifications or training suggestions by transit maintenance personnel. In general, it is fair to say that, although skeptical at first, maintenance supervisors and staff are now pleased with the reliability and maintainability of the current articulated transit bus. Table 7 provides specific comments on maintenance experiences among the 14 properties now operating articulated buses. The following sections reinforce this finding and note any exceptions.

5.2.1 Servicing, Inspection and Storage

The current fleet of articulated buses apparently offered no unusual problems in servicing, inspecting or parking. Care should be taken to ensure that servicing doors for fuel, water, fluid level checks are on the most convenient side of the vehicle. The fuel fill on some early M.A.N. vehicles was on the left (driver's side), causing some difficulty in the fueling lane.

Bus washing equipment in most areas has not caused concern, although if the pressure of the side brushes is not adjusted properly, some damage could occur to the bellows. Special considerations should be taken with gantry-type bus washing systems.

Generally, vacuum cleaning systems, especially the type where the vacuum covers the passenger door, may not be powerful enough to clean the full length of the articulated bus. Sweepers or hand-held vacuums are being used.

Periodic inspections do not appear to raise any particular problems. Certain inspections automatically fall into the practices established by the maintenance department. Typically, this is the case for brake inspections even though all articulated transit buses currently have automatic slack adjusters.

Other more thorough inspections, for example at 6, 12 and 18 thousand miles, do take longer, however. Transit experience indicates that these inspections take from one and one half to three times longer. The reasons offered for this fact are:

- 1) The total vehicle is new to maintenance staff; the design and equipment tends to be more sophisticated often requiring dedicated staff or, as a minimum, attention by the foreman to assign "better" mechanics; vehicle familiarity could moderate this inspection time somewhat;
- 2) The vehicle is longer, with longer hydraulic lines, an extra axle, a joint mechanism, more tires, etc. Therefore, the feeling is that it is reasonable for periodic inspections to take more time.

Parking and storage associated with maintenance facilities do not appear to be that much of a problem, particularly where the space exists or where a new facility design incorporated these concerns.

5.2.2 Transmission Reliability and Maintenance

Maintenance experience with articulated bus transmissions has only been associated with the Renk automatic, 4-speed (type DOROMAT 874-A) used in the M.A.N. buses and the Detroit Diesel Allison automatic, 4 speed (Type HT-740) used in the Crown-Ikarus vehicle. Both transmissions have an integrated hydraulic brake retarder.

In general, after some early problems, diagnosed as a design problem with the vibration damper, the Renk transmission has performed and continues to perform satisfactorily. All transmissions experiencing such a defect were retrofitted under a warranty program conducted by Renk. The reaction of those maintenance personnel dealing with Renk transmissions is that it has performed far better than the V730 transmission supplied during the same timeframe. More than one property expressed the opinion that the transmission, however, is "not forgiv-ing"; that is, the procedures for maintenance or inspection must be closely followed or problems will occur.

During 1981 Detroit Diesel Allison (DDA), together with Los Angeles (SCRTD), Chicago (CTA) and Pittsburgh (PA Transit) began installing the HT-740 transmission in one test vehicle at each property. Documentation of this modification, entitled "HT-740 Regear Manual for M.A.N. Articulated Buses," has been published by DDA. Apparently, the reason for the study is to pursue alternate cost-effective options for transmission replacement.

The DDA HT-740D is in all Crown-Ikarus buses in use in this country. Since the bus deliveries were relatively recent the revenue service operation of this transmission is limited. So far the problems appear to be minor with transmission modulation adjustments required in Portland, some seal failures in Louisville and one or two transmission failures in San Mateo. These last problems reportedly are due more to vehicle fabrication problems than the transmission itself. The HT-740 has a long history of reliable, heavy-duty use in trucking applications. The popularity of this transmission is growing with U.S. manufacturers, such as Neoplan and Gillig. standard equipment.

The General Motors Corp., Truck and Coach Division is planning on using a DDA V735 transmission in its articulated transit coach. This transmission is used in a transverse engine-transmission configuration and is currently described as having higher load capacity and offering electronic controls and a hydrau-

5.2.3 Air Conditioning Reliability and Maintenance

Problems with bus air conditioning is not unique to articulated buses. The greatest experience to date is with M.A.N. vehicles using a separate Perkins diesel engine and an air conditioning system manufactured by Trane. The compressor, generator, batteries, and condenser are installed in the rear of the bus. As reported by many of the transit properties and reinforced by M.A.N. representatives, the initial problems were the result of vehicle specification that were too design-oriented and over-protective. The modification offered under warranty and accepted by most all the properties (excluding those, such as San Diego, that earlier worked out the problems together with

M.A.N. and Trane) involved a simplification of the design. Excessive shutdown possibilities were eliminated without sacrificing adequate electrical protection. The auxiliary alternator, additional batteries and associated wiring and controls were deleted. In general, the design simplification program greatly improved the reliability of the air conditioning system as demonstrated by its improved performance during the summer of 1981. A few properties such as AC Transit and Pittsburgh, feel the system can do better and that the air conditioning system remains "tempermental".

Little comparative information is available on other articulated buses. Crown-Ikarus uses a Carrier, Model CI-286, with a 10.3 ton capacity. Neoplan is planning to use a Suetrak, roof-top, air conditioning system. GMC Truck and Coach reportedly will use a design similar to that provided in the RTS-04 series except with increased capacity.

5.2.4 Accesory Belt Drives

Accessory belt drives on the initial M.A.N. articulated buses apparently reminded transit maintenance personnel of the earlier days when many major accessories were belt driven. Problems resulted in keeping proper tension on the relatively high number of belts and having to frequently replace more than one belt at a time. With the air conditioning modifications and the availability of a retrofit kit for a new two cylinder gear driven air compressor, many of the belt drives have been eliminated. Together with improvements in belt material and drive designs and increasing familiarity by maintenance personnel, the problems should be minimized.

5.2.5 Parts Cost and Delivery

The cost of replacement parts, particularly those parts of foreign manufacture, are reportedly high. During the first few years of M.A.N. bus operation all parts orders were handled by AM General. Apparently the costs were high and deliveries lengthly as compared to parts for buses of American manufacture. This appears to be another problem that is being resolved in a number of ways.

- 1) M.A.N. Truck and Bus Corp., as of January, 1982, has assumed control of all parts supply for their vehicles. Properties can and do rely on their M.A.N. service representative to forward and monitor parts orders. M.A.N. has initiated a computerized parts supply system to help detect potential fleet-wide problems earlier and help them more efficiently control their (M.A.N.'s) inventory. This efficiency, they claim, allows them to save money on their financing charges and those savings help maintain or lower parts prices.
- 2) M.A.N. claims that additional components of the new articulated buses will be "Americanized". This means that more components, such as roof hatches and brake systems, will be of American manufacture, thereby, reducing replacement costs and delivery time.
- 3) Numerous U.S. manufacturers of small components are becoming "secondsource" manufacturers in the articulated parts market. In addition, some properties have successfully located local suppliers for overhauling or rebuilding components.
- 4) Most properties have established a "history" of their frequent parts orders. This experience permits them to more effectively and efficiently order parts.

There is little experience to date with parts supply for Crown-Ikarus buses. Crown has an advantage of having the driveline components (engine, transmission, axles, and brakes) supplied by U.S. manufacturers. Also, there should be little problem with parts availability with the Neoplan or GMC articulated bus parts. Neoplan's foreign parts share is only between 10-15 percent. GMC will use the RTS design and only special components unique to the articulated design, such as the joint, could pose any problem.

5.2.6 Body Repair

A majority of the properties deploying articulated buses have not performed extensive body repair. There may be an abundance of scrapes, particularly at the rear sides due to the swing-out action on turns, but few have been damaged enough to require body work. The side panels on the M.A.N. articulated bus are heated during manufacture so the skin is "stretched" at ambient temperatures. Transit properties do not have the capability to reproduce this process. Instead, they merely weld a steel plate over the tear or puncture, body-filled and paint. The general opinion is that difficulty and cost of body work on articulated buses is comparable to conventional vehicles in the domestic fleet.

5.2.7 Brake and Tire Life

All articulated buses in service today are equipped with hydraulic brake retarders. The conventional bus fleet, except for a few scattered tests, does not use either electronic or hydraulic brake retarders, although some interest is growing among certain properties (e.g., MARTA, San Diego, SEMTA). Manufacturers feel that, if used properly, brake retarders lengthen the brake lining life.

As reported by transit maintenance personnel, the brake lining life on articulated buses has been good, for the most part. The general opinions expressed were that the M.A.N. articulated buses provide better brake lining life than current ADB's, but still less than "Newlook" design, 40-foot buses. Although the figures vary widely, brake linings typically last 35-40,000 miles on the front and rear axle and more than that on the drive axle. AC Transit and Minneapolis - St. Paul appear to be experiencing much better brake performance, reportedly in the area of 60,000 miles between relining. A second feature of the articulated buses other than the retarder that may increase brake life is the automatic slack adjuster. Experiences with the M.A.N. brake slack adjusters are generally good. With the exception of one or two properties, who are experiencing initial problems with the slack adjusters on the Crown-Ikarus vehicles, the general opinion is that they work well.

Tire wear, universally, appears worse than conventional 40-footers. In general, the opinions expressed indicate that tire life is only half as good as with the rest of the fleet. This is one maintenance area that has not shown improvement with time. M.A.N. has stressed the need to inspect wheel alignment and use good quality bias ply or radial tires. The alignment equipment is expensive (approx. \$4,000) and properties with only a few articulated buses are reluctant to spend the money. It is worth noting that M.A.N. service representatives may possibly make the equipment available on loan to individual properties for them to evaluate how tire mileage might improve with the use of this equipment.

Experience with tire wear on Crown-Ikarus articulated bus is minimal. Early indications from San Mateo suggest poor tire wear with regrooving being required on steel belted radial tires in less than 15,000 miles. Information from Louisville, however, indicates that with about 20,000 miles on the tires they are expecting no tire wear problems.

Virtually all transit properties lease bus tires. Due to the excessive tire wear experienced to date leasing rates are higher in many cases for the tires used on articulated buses. Also some properties experienced early problems with leasing companies that were unable to supply the proper size.

5.2.8 Articulated Joint

The articulated mechanism is one piece of equipment that is unique and, therefore, different than anything maintenance personnel have worked on before. Some articulated joint designs employ sophisticated technology, especially in the electronic controls, to prevent jackknifing and alert the operator. To date, no property deploying articulated buses thought reliability and maintenance of the joint mechanism or controls were a problem.

EARLY MAINTENANCE PROBLEMS	o Tire wear not as good as lighter, conventional bus.	o Air conditioning problems; corrected with manufacturer's suggested modification.	o Parts costs continue to be higher than parts for conventional buses; some American pro- ducers are lowering costs for selected components.	o Eight replacement vehicles had incorrect steering mechanisms increasing swing-out to 50-53". Corrected later to reduce swing- out. Result was rear side accidents almost eliminated.	 b Excessive tire wear on drive axle. b Parts costs are still high. c Early air conditioning problems resolved. 	corrected in and Trane.	o Brake lining life is comparable to remainder of fleet (18-24,00 between re-line).	o Renk transmissions on all 45 vehicles were re- trofitted under warrenty - appear reliable now.	
 GENERAL MAINTENANCE ADVANTAGES	o Improved brake lining life over many "new- looks" and their GFC 870's.	o Transmission (Rehk) reliability has proven to be very good compared to existing V730 transmission.	o Body repair easier, less expensive than GFC 870 and comparable to repair costs for "new look".	 Transmission (Renk) performance and relia- bility currently is very good compared to transmission in other new 40-foot buses. Automated slack adjuster work well. 	o Brake lining life averaging 58-63,000 miles- 60% improvement over 40 foot coaches in their fleet.				
TRANSIT PROPERTY	MARTA-ATLANTA (10 M.A.N.)			SEATTLE METRO (151 M.A.N.)	MTC-MINN/ST. PAUL (20 M.A.N.)	SAN DIEGO TRANSIT (45 M.A.N.)			

TABLE 7 SUMMARY OF SERVICING AND MAINTENANCE EXPERIENCES

EXPERIENCES
MAINTENANCE EXPERIENCE
AND
SERVICING
0F
SUMMARY
7.A
TABLE 7A

TRANSIT		
PROPERTY	GENERAL MAINTENANCE ADVANTAGES	EARLY MAINTENANCE PROBLEMS
SAN DIEGO TRANSIT (CONTINUED)		o Unhappy with hydraulic transmission retarder on all artics.
		o Relatively poor fuel economy (approx. 2 mpg.).
TRI-MET, PORTLAND		o With 55 of 87 delivered the Ikarus is demon- strating poor brake life (10,000 plus miles).
(55/87 Crown-Ikarus)		o Slack adjuster problems.
		o Adjustments required in transmission modulator.
		o Vapor wheelchair lift on 3rd door has had problems.
SAMTRANS-SAN MATEO, CA	o Transmission appears reliable.	o Poor brake lining life (10-13,000 mi.) despite hydraulic transmission retarder.
(10 Crown-Ikarus)		o Poor tire wear-regrooving required at 13-15,000 miles.
		o Experiencing some structural problems - rein- forcing required.
		o Wheelchair lift (Vapor) causing problems.
		o Some electrical problems - familiarity required with 24 V system.
SCRTD - LOS ANGELES, CA		o Early electrical problems corrected.
(30 M.A.N.)		b Parts cost relatively high: time for delivery improving.
		<pre>b Transmission-related problems - over 13% of all road calls for the artic were for transmission problems.</pre>

.

EXP ER I ENCES	
AND MAINTENANCE	
AND	
SERVICING	
OF	
SUMMARY	
7B	
TABLE	

TRANS I T PROPERTY	GENERAL MAINTENANCE ADVANTAGES	EARLY MAINTENANCE PROBLEMS
SCRTD - LOS ANGELES, CA (CONTINUED)		o Early air conditioning problems resolved some- what by modifications, however, serious relin- bility problems still exist.
PA TRANSIT - PITTSBURGH, PA		o Transmission has been a problem with 17 different failures in 11 coaches.
(20 M.A.N.)		o Requires more attention than conventional coach; higher degree of sophistication in design; requires assigning best mechanics.
		o Brake lining life worse than conventional 40-foot "newlook" tiough comparable to AD3s.
		<pre>o Air conditioning modifications appear to correct early problems yet the air conditioning system is still "tempermental".</pre>
AC TRANSIT - OAKLAND, CA	o Brake lining life on front and rear axle approximately 35,000 mi.; drive axle in	o Early Renk transmission problems appear to be corrected with manufacturer retrofits.
(30 M.A.N.)		o Tire wear is about twice as fast; therefore, tire leasing costs are higher.
		<pre>o Parts replacement costs remain higher than con- ventional 40-foot buses; delivery time has improved.</pre>
		o Requires more time for inspecting - up to three times more time for thorough inspection.
WMATA - WASHINGTON, DC	o Brake lining life is very good - approxi- mately 40,000 miles on first two axles	o Transmission - retrofits complete and performance is good now.
(43 M.A.N.)	o Structure appears durable and extent of	o Air conditioning - modifications complete and performance is much improved.
	uallage to teso	o Electrical system, particularly independent charging system was revamped.

CE EXPERIENCES
MAINTENANG
AND
SERVICING
0F
SUMMARY
7C
TABLE 7C

TRANSIT PROPERTY	GENERAL MAINTENANCE ADVANTAGES	EARLY MAINTENANCE PROBLEMS
WMATA - WASHINGTON, DC (Continued)	o Parts supply process has improved recently using manufacturer's representative on the property.	o In general, air and electrical systems are more complex and often require well-trained and dedicated maintenance staff.
CTA - CHICAGO, ILL (20 M.A.N.)	o Renk transmission has proven very reliable.	o Tire wear in comparison to newlook buses has been poor.
		1
PTS - PHOENIX, AR	e s c	o Tire wear continues to be about one half that of wear on newlook buses.
(20 7.4.1.)	between lining changes for all axles.	o Air conditioning - all modifications performed - improvements were evident.
		o Parts supply problems no worse or better now than parts supply for conventional 40 foot buses: second sources are improving parts costs, as well.
		o Fair amount of jackknifing turntable damave, pri- marily nonfunctional railings under the flatform.
		o Periodic inspections do take more time, though it is considered reasonable since the vehicle is longer, has an additional axle, etc.
		o Change to a single 2 cylinder air commessor per manufacturer's suggestion, should improve reliability further.

NCE EXPERIENCES
NG AND MAINTENANCE
AND
SUMMARY OF SERVICING
OF
SUMMARY
7D
TABLE

TAMBIT GENEAL MUNTEAMORE ADVATACES EARLY MAINTEAMORE ROBLESS TAME - LOUISVILLE, KY of had the voltates inne been if new about sentol. Dr date, the voltates inne been if new about sentol. Dr date, the voltates inne been if new about sentol. Dr date, the voltates inne been if new about sentol. Dr date, the voltates inne been if new about sentol. Dr date, the voltates inne been if new about sentol. Dr date, the voltates inne sentol. Dr date, the voltates inne sentol. Dr date, the voltates inne sentol. Dr date, the voltate sentol. Dr date, the voltate setol. Dr date,			
<pre>DIISVILLE, KY 0 To date, the vohicles have been in use about 8 months for an average of 18-20,000 miles/ vehicle. Therefore, it is still too early vehicle. Therefore, it is still too early improvements or problems.</pre>	TRANS I T PROPERTY	GENERAL MAINTENANCE ADVANTAGES	EARLY MAINTENANCE PROBLEMS
SAN RAFAEL, CA o Brake lining life is comparable to newlook o design buses. o Bus has very few problems now that prelimin- o ary modifications are complete.		To date, the vehicles have 8 months for an average of vehicle. Therefore, it is to identify many definite m improvements or problems.	o Brake lining life is about one half (8-10,000 miles on front axle) of that experienced with conventional 40-foot vehicles.
	SAN RAFAEL,		

6.0 MISCELLANEOUS TECHNICAL INFORMATION

This section identifies and briefly describes a number of hardware and procedural modifications or suggestions that appear to have a demonstrated benefit to the operation or maintenance of articulated transit coaches. The source of these ideas is primarily from discussions with transit properties around the country who currently deploy articulated coaches. In addition, some of the information was obtained through visits and discussions with the vehicle manufacturers. Some of these ideas may not be unique to articulated transit buses, nor may this information be totally novel or benefical to everyone. In general, the information appears to offer solutions to some of the early problems encountered in the use of articulated buses, could instigate further improvements by users of articulated buses or transit planners, and, clearly, should be communicated and shared by the transit community as much as possible.

- MARTA Atlanta, Georgia was concerned about jackknifing when operating the articulated bus in reverse. Transit properties in general have emphasized training, both with operators and mechanics, as a way to minimize jackknifing and possible damage to the joint or turntable equipment. MARTA went two steps beyond that. First, they increased the volume of the manufacturer supplied buzzer ensuring that the driver is alerted that the bend angle of the bus is getting too great. Second, they have experimented with the installation of a microswitch sensor connected to the radio on board the bus to automatically signal the dispatcher that one of the fleet has exceeded a safe bend angle.
- MARTA has also specified "unlockable" windows to permit opening of the passenger windows by the driver using a square "key" when either the air conditioning fails or environmental conditions permit. The windows cannot be unlocked or opened by the passengers.
- San Mateo County Transit District attempted to "Americanize" their articulated buses they were to receive from Crown-Ikarus by specifying Bendix-Westinghouse brass fittings. Unfortunately, Ikarus

utilized the Bendix Westinghous (Metric) suppliers in Europe and, therefore, defeated that property's attempt to standarize and replacement fittings. Apparently, the lesson here is to be more specific and be aware of potential ambiguities.

- o San Mateo installed an audible alarm to alert the operator that someone or something is activating the sensitive edge on the rear doors. At certain times, the driver loses sight of the rear door and any passengers that may be boarding or alighting from the articulated bus.
- o Seattle Metro is attempting to minimize rear side damage to the articulated bus and the "snagging" of obstacles during swing-out by installing bumper extensions all the way back to the wheelwells.
- o San Diego Transit as well as other properties strongly recommends the purchase and use of the special wheel alignment tool. M.A.N. Truck and Bus feels this is a necessity to obtain proper tire life. However, some properties feel special equipment is not necessary (MARTA).
- o Pittsburgh (PA Transit), Chicago Transit Authority (CTA) and Los Angeles (SCRTD) have experimented with retrofitting a Detroit Diesel Allison, Model HT-740 automatic transmission with brake retarder in place of the Renk automatic transmission which is original equipment and also has an integral retarder. The properties performed this experiment with cooperation and technical support from Detroit Diesel Allison Division of General Motors Corporation. As of mid-February, 1982, the buses at CTA had accumulated about 12 thousand miles. SCRTD had accumulated about 5 thousand miles and Pittsburgh had not yet placed the test vehicle in service.
- Oakland AC Transit experienced costly damage to electronics associated with Renk transmission when the vehicle was jump-started. Disconnecting the electronics at the circuit breaker eliminated this problem.

- Oakland, together with a Renk service representative, modified the transmisison control electronics to govern the speed in reverse to 1.5 2.0 mph. This was beneficial in minimizing damage to the joint and turntable when mechanics operated the vehicle in reverse.
- o Washington, DC WMATA experienced problems with operators "reving" the engines in neutral to build up air pressure and then shifting to forward or reverse gear before the engine rpm was low enough to safely permit it. Modifications to the electronics associated with the Renk transmission eliminated this problem.
- o Phoenix and San Diego and possibly other properties are adding additional fuel tank capacity. In the two cases mentioned the properties are doubling the capacity to 200 gallons.
- o An engine tachometer on the operator's console apparently is a beneficial option in articulated transit buses having the engine in the rear. With engine compartment sound-proofing and high ambient noise it is possible for the bus operator to be unable to hear the engine.
- As startling as it might be to see a new (e.g., foreign) design articulated bus travel down your city street for the first time, it is even more so to see the familiar New Look design or RTS design in an articulated configuration. Fred Wagoner at Coach County Charter Company in Campbell, CA, has used this same philosphy of merging two "standard" design vehicles to fabricate his own articulated bus for his charter service. During approximately a three year period Mr. Wagoner performed body and fabrication work on two, eighteen to twenty year old Crown Interstate Coaches and created a 74 passenger articulated intercity bus using an articulation joint of his own design. He has started building his second articulated bus, again using old (15-18 yrs.) Crown coaches.

- o For transit authorities wishing to review articulated bus specifications used by other properties in their bid solicitation, the American Public Transit Association (APTA) in Washington, DC has established a file of such specifications.
- o A number of transit authorities have undertaken articulated bus demonstration and evaluation programs. Pittsburgh (PA Transit) is planning on demonstrating one or two Magirus-Deutz articulated buses beginning in April, 1982. Metropolitan Suburban Bus Authority, East Meadow, NY, is planning to demonstrate a DAC articulated bus. Plans at MSBA include modifications to "Americanize" the propulsion system. San Francisco MUNI is currently evaluating three articulated transit buses - M.A.N. SG220, Neoplan N421, and Crown-Ikarus 286 - to assess, among other things, the fuel economy, hill-climbing ability, and overall operating cost per seat mile. MUNI is scheduled to document the evaluation by late Spring, 1982.
- A "higher" capacity bus is being developed by at least two European bus manfuacturers - M.A.N. and Mercedes Benz. M.A.N. has unveiled a prototype of a <u>double</u> articulated bus that can carry 225 passengers, weighs about 32 tons and is about 70 feet long. The vehicle basically is constructed of three sections, "hinged" at two places. Similarly, Mercedes Benz three sectioned, articulated, O-Bahn bus reportedly can carry about 240 passengers and is 75 feet long. This vehicle is designed for automated guideway use and for bus-train formation on track-guided sections. Both prototype vehicles are undergoing testing in Germany.
- Neoplan in Germany has manufactured and sold a number of articulated double decker buses. One version is an articulated bus with a second deck on only one section of the bus. Another version, shown below, is a full double deck articulated bus. Although shown here is an intercity or charter-type of bus, it is possible to fabricate a transit-style vehicle with the same configuration.

FIGURE 14 NEOPLAN ARTICULATED DOUBLE DECKER BUS

O One area that is critical to the satisfactory deployment of articulated transit buses is the design and equipping of bus maintenance facilities. The vehicle manufacturers realize this and offer technical assistance to properties in the planning of new or rehabilitated structures and in identifying required equipment to most effectively and efficienty maintain the articulated bus. In addition, the following suggestions, as a minimum, should be considered.

- Garage bays must be sufficiently long to permit closing of overhead doors.
- Many maintenance personnel prefer a pit, preferably long enough (80-85 ft.) to allow space to get in and out or shaped like a cross with side access openings.
- Almost all the properties having articulated buses use and like the portable hoists, such as the one shown in Figure 15. They apparently work well and can be used on other size vehicles as well. They are almost a necessity for properties who are not planning a new facility. Portable hoists are useful near the steam cleaning area for use on mid-engine articulated buses.
- Special tool kits are offered by articulated bus manufacturers.
- Ensure that filling openings for fluids are on the correct side of the vehicle and/or lines (fuel, air, lubrication) are long enough in service lanes and bays.
- Garage bay opening or service lanes must be sufficiently wide and have no obstructions for at least 60 feet in front of the opening, since the rear of the coach will swing out when the bus turns.
- Locate oil and water drains to suit the engine or drain plug location on the articulated bus. M.A.N. and Crown-Ikarus are in the middle of the vehicle.
- Consideration should be given to 3 post hydraulic hoist capable of handling 30, 40, 55 and 60 foot vehicles.
- Generous turning radii should be allowed.

- Consider provisions for towing an articulated bus. One property (Seattle) uses a "dolly" type of device inserted under drive axle.
- Conventional vacuum systems may not be powerful enough for the volume in an articulated bus.
- In slippery conditions or in operating in reverse it is possible to cause the articulated joint to "lock-up". It is then necessary to actually lift the bus to reduce the bend angle. Such provisions must be planned for.

MAINTENANCE OF ARTICULATED BUS MECHANISM USING PORTABLE LIFT EQUIPMENT FIGURE 15

7.0 FINDINGS AND CONSIDERATIONS

There are about 500 articulated buses operating in urban transit service throughout the U.S. About 80 percent of these vehicles were manufacturered by M.A.N. corporation; all have been in service at least two years. The remaining articulated buses are manufactured by a joint venture of Crown Coach Corp. and Ikarus; these articulated buses have operated less than one year in revenue service. Clearly, the information and perceptions available to date from transit properties have been dominated by M.A.N. technology.

Information on new orders demonstrates that M.A.N. continues to dominate the articulated bus market. Crown-Ikarus remains in the business and Neoplan has entered the market for the first time with a modest order from Atlanta. Therefore, operational and maintenance experiences with articulated buses will continue, at least through 1984, to be dominated by M.A.N.

Although on any given operational or maintenance issue there may be a divergence of experience and opinion, the consensus of opinion among the fourteen transit properties operating articulated buses is that the vehicles have performed well, increased ridership on their respective routes, and proven to be very reliable coaches.

This general opinion may result from the fact that most all of these properties had a manufacturer's representative on the premises, full time for the first year and longer if the size of the order warranted it. In addition, the warranty period of a new vehicle is often the "honeymoon" period where most everything that goes wrong with the bus is corrected or paid for by the manufacturer. In addition to the on-site attention and warranty back-up, the two manufacturers continue to offer comprehensive technical assistance to aid and advise the property in all aspects of operation, maintenance, training, facilities design, and accessory equipment. Strong and responsive customer support has helped "smooth-out" early performance and reliability rough spots. Finally, the reaction to the articulated bus from transportation and maintenance departments appears to reflect the capabilities of the vehicle and the quality of design and manufacture.

While many planners and transportation personnel initially considered the articulated bus suitable only for express service on wide streets with adequate turning areas, the experience of the last four years has shown that the articulated bus can safely and efficiently operate on virtually all routes and in all operating environments in the U.S.

The experiences with articulated transit coaches during the past few years are interesting and worth reviewing and understanding. It is true there were some early problems with air conditioning reliability, the abundance of belt drives for engine accessories, minor transmission problems and a propensity for rear side body damage due to swing-out on turns. However, the design and componentry of articulated buses has evolved and improved in the last four years. After much effort by maintenance departments and manufacturers the vehicle appears to be performing well. A snap-shot view today reveals:

- o High vehicle availability (greater than 90 percent)
- o High vehicle utilization (up to 18 hours of revenue service daily)
- o Good fuel economy on a per seat-mile basis;
- Continually improving safety record, occassionally surpassing other segments of the fleet; and
- o Excellent passenger and operator acceptance.

Experiences worthy of highlighting for prospective buyers of articulated buses include:

- o Adequate facility planning for servicing and maintenance is essential;
- Early and frequent training is required for operators such expense should be allowed for;
- o Consideration of dedicated maintenance personnel is beneficial; and
- o Investigation of parts supply, both OEM and second sources, is worthwhile.

The capital cost of articulated buses is relatively high. Representative contract prices are currently range from \$275-\$300 thousand per unit. On a per seat basis the initial cost of articulated buses may be somewhat higher than conventional 40-foot coaches. However, it appears that the articulated

bus could have a significant advantage over the conventional bus in meeting service requirements at a lower operating cost. Using passenger capacity alone as a guide for the comparison, two articulated buses could carry the same capacity as three standard vehicles, thereby saving the cost associated with one driver. To date, articulated transit coaches typically have been assigned to runs to meet existing high demands or to increase ridership. To better realize the full potential of articulated buses in U.S. transit service, it is generally agreed that special planning and scheduling efforts are needed for each location and route. In this way appropriate data could be obtained to quantitatively determine the service and cost benefits of this type of vehicle.

APPENDIX A

REPRESENTATIVE LIST

NORTH AMERICAN AND EUROPEAN

ARTICULATED BUS MANUFACTURERS

Crown Coach Corporation (Ikarus) 2428 East 12th Street Los Angeles, CA 90021 TWX 910-321-2368 Tel. (213) 627-4021 William H. Coryell, Ron Ingraham Transit Program Dir. Years experience producing buses: 55 Product line: Articulated city transit coaches; heavy-duty school coaches (35 and 40 foot); custom utility coaches; custom fire trucks Productive capacity: buses per year: 150 articulated 600 school/utility ____ DAC (Autozel) Str. Ostrov 3 Tel. 23.93.20 Bucharest 5, Rumania Distr. by: Auto Export Import 45 Republicii Str. Brasov, Rumania Dipl. Engr. Pompiliev Petrescu Daimler - Benz A. G. Hanns-Martin-Schleyer-Str. 1 6800 Mannheim 31 Telex 462 131 West Germany Tel. (0621) 3931 Reinhold Kiel, Sales Mgr. Years experience: 87 Product line: Standard city buses, articulated city buses, ACB trolley buses, cross-country and tourist coaches, bus chassis, CKD versions in addition to the commercial line of passengers, trucks, tractors, unimog Productive capacity: 38 buses and 1600 chassis per year ____ Mercedes-Benz of North America, Inc. One Mercedes Drive Montvale, NJ 07645 Tel. (201) 573-0600 Walter Bodack

Carrosseriefabriek Den Oudsten & Zonen N.V. (Utrechtsestratweg 112A) P.O. Box 26 3440 AA Woerden Telex 47835 The Netherlands Tel. 03480-12345 Years experience: 50 Product line: Intercity buses with semi-integral steel frame and poly-ester panel sections constructed on chassis of various manufacturers Productive capacity: 400-500 per year ____ De Simon S.P.A. (Inbus) 33010 Osoppo Tel. 0432/986001-2-3 Udine, Italy T1x 460868 Ilvo De Simon, President Years experience: 30 Product line: Complete range of city and intercity buses on various chassis. Productive capacity: 1000 buses per year. ____ Enasa (Pegaso) Bus Div. Jose Abascal 2 Madrid, Spain 3 Telex 27493 (Buska E) Tel. 91 447 51 00 Jose M. Blasco, Sales Mgr. Francisco Iglesias, Mktg. Mgr. Product line: Full range of transit buses from 23 feet to 40 feet including articulated buses ____ General Motors of Canada, Ltd. P.O. Box 5160 Oxford Street E. London, Ontario Telex 064 7231 Tel. (519) 452-5534 Canada NGA 4N5 Don Kershaw, Coach Sales Mgr. John Atchison P. G. Brewer, Gen. Sales Mgr. Years experience: 20 Product line: City transit coaches Productive capacity: 225 per year ____

General Motors Corp. Truck and Coach Division 660 South Blvd., E. Pontiac, MI 48053 Tel. (313) 857-5000 John Rosenkrands, Asst. Ch. Eng. Ed Stokel, Dir. Public Trnsp. M. A. Pullin, Coach Sales Mgr. Years experience: 56 Product line: Advanced design specification 35 and 40 foot coaches and articulated coaches. Productive capacity: approx. 5000 buses per year. _ _ _ _ _ OAF-GRAEF & STIFT AG. Brunnerstrasse 72 A-1211 Vienna Telex 133329 (AFLIE A) Tel. 86 96 11 Austria Years experience: 75 Product line: City and intercity buses full range including articulated, double-deck, trolley, diesel, and LPG as well as special buses for airfield use and mobile X-ray clinics. Productive capacity: 250 buses per year. ____ Carrosserie Hess A. G. (See Volvo) CH-4512 Bellach S.O. Switzerland Telex (845) 34624 Tel. (065) 3.08.81 Heinrich Naef Lars Sandberg, Volvo Resident Years experience: 50 Product line: Heavy-duty city transit buses and trolley buses in aluminum construction on chassis of various manufacturers. Productive capacity: 250 buses per year. ____ S. A. Louis Heuliez B. P. 9 (7, Rue L. Heuliez) 79140 Cerizay, France Telex 790 466 Tel. (49) 80.12.22 Jean-Pierre Derey, Mktg. Dept. M. Louis Heuliez, Director Patrice Roulois R. Cesbron, Comm. Mgr.

Ikarus Body and Coach Works (see Crown Coach) Margit U.2 Budapest, Hungary 1630 Telex 224766 Tel. 831-396 Dr. Sandor Szego, Dep. Mng. Dir. Years experience: 60 Product line: Mid-size, standard and articulated buses in integral welded steel construction Productive capacity: 4000 buses per year _ _ _ _ _ Karl Kaessbohrer Fahrzeugwerke GmbH Postfach 2660 (Peter-Schmid-Strasse) D 7900 Ulm (Donau) West Germany Telex 07-12766 Tel. (0731) 1811 Karl Kromer, Managing Director Hans Schoeffler, Managing Sales Dir. Years experience: 50 Product line: Full range of mid-size, standard, articulated, and double-deck city transit and intercity coaches in integral welded steel construction. Productive capacity: 2000 buses per year. Recent complete redesign of full product range will soon be completed with inclusion of the articulated transit bus. ____ Lex Vehicle Engineering Ltd. Office: 17 Great Cumberland Place London, W1H 8AD Ringwood Road Telex 477756 (Southampton) Totton, Hants, England SO4 3EA Tel. (0703) 862137 A. F. Norman, Marketing Mgr. Years experience: 25 Product line: Mid-size, standard, and articulated coachwork in steel construction on various chassis. Productive capacity: 130 buses per year. -----DAF Bus Div. Geldropseweg 303 Eindhoven 5645 TK Telex 51085 Tel. (40) 143075 The Netherlands (40) 149111 Van De Pol, Mktg. Mgr. C. Bohme, Manager ____

Leyland Vehicles Lancaster House, Leyland Preston, Lancashire PR5 1SN Telex 67655 Tel. (07744) 21400 England Michael B. Cornish, Mgr. Spec. Veh. Chas. Bentley, Dir. Spec. Veh. Vent. London Tel. (07744) 24241 Jay D. Hale, Export Sales K. Lloyd Years experience: 80 Product line: Mid-size, standard, double-deck, urban, inter-urban, and tour buses and/or chassis. Productive capacity: 5000 buses per year. ____ Leyland Vehicles Overseas Div. Guildcentre, Lords Walk Preston, Lancs. PR1 1QY Telex 677342 England Tel. (07722) 22232 R. R. Morris, Overseas Ops. Dir. C. H. Braithwaite, Overseas Oper. Mktng. Dir. ____ Also: P.O.B. 2740, 7900 ULM Magirus-Deutz A. G. 65 Hauptstr. 6500 Mainz 25 Tel. 06131 6961 West Germany Herbert Kusgens, Sales Mgr. H. Brucki, Regional Mgr. Years experience: 60 Product line: Full range of small, mid, standard, and articulated city and inter-city buses in welded steel construction on proprietary chassis. Productive capacity: 2000 buses per year. ____ Mack Trucks Inc. (See Renault) Box M Allentown, PA 18105 (RVI Rep) Tel. (215) 439-3756 John Bowerman-Davies ____

M.A.N. Truck & Bus Corp. 3000 Town Center, Suite 111 Telex 234249 (MAN SOFD) Southfield, MI 48075 Tel. (313) 352-7850 George Pickett, Sales Mgr. Lutz M. Eggert, Exec. V.P. Years experience: New U.S. plant opened in North Carolina November 1981 Product line: Articulated diesel transit coaches in 55 foot and 60 foot lengths in steel coachwork on proprietary chassis Productive capacity: 390 buses per year. ____ Gottlob Auwaerter A. G. (Neoplan) Vaihinger Str. 122 7 Stuttgart (Moehringen), West Germany Ing. Bob Lee, General Manager Ing. Albrecht Auwaerter, Managing Dir. _ _ _ _ _ Neoplan USA/Rolf Ruppenthal & Assoc. 627 South Broadway, Suite B Boulder, CO 80303 Telex 450838 Tel. (303) 499-4040 Rolf Ruppenthal Factory - Neoplan 1 Gottlob Auwaerter Drive Lamar, CO 81052 Tel. (303) 336-3256 Years experience: New factory in Lamar, Colorado opened October 1981 Product line: Full range of small, mid, standard articulated and double-deck city, intercity and tour buses in integral welded steel construction Productive capacity: 500 buses per year ____ Renault Vehicules Industriels Buses Div. 8 Quai Leon Blum Telex 620 567 Tel. 772 33 33 92156 Suresnes Cedex, France Jean-Pierre Friederich, North Am. V.P. Years experience: 75 Product line: Full range of small, mid, standard, and articulated city transit and intercity buses in welded steel construction on proprietary chassis. ____

Saab-Scania, Scania Division 151 87 SODERTALJE, Sweden Telex 10200 (SCANIA S) Tel. (0755) 810 00 Rolf Lindstrom, Sales Mgr. Years experience: 70 Product line: Chassis and buses for city transit, intercity, and tour operation. Productive capacity: 2700 chassis and 220 buses per year. ____ Saab-Scania of America, Inc. Saab Drive, P.O. Box 697 Orange, CT 06477 Tel. (203) 795-5671 John J. McKeon John Schiavone Ralph P. Millet _ _ _ _ _ Steyr-Daimler-Puch A. G. P.B. 100 (Haidequerstr, 3) A-1110 Vienna 2, Austria Telex 131810 Tel. (0222) 76 45 11 Years experience: 75 Product line: Mid-size, standard, and articulated transit buses in integral welded steel construction. Productive capacity: 350 buses per year. ____ Trans Bus of America Corp. (Steyr) P.O. Box 1199 299 Warren Avenue Portland, Maine 04104 Tel. (207) 797-7837 Robert Brown, Sales Mgr. _ _ _ _ _ Van Hool Bus & Commercial Vehicle Works Bernard Van Hoolstraat 58 B-2578 Koningshooikt-Lier Telex 31709 Belgium Tel. (031) 821500 (Antwerp) Leon Van Hool, Managing Dir. Leo Gijsels, Eng. Proj. Mgr. Years experience: 30 Product line: Small, mid-size, standard, articulated and double-deck city transit, intercity, luxury coach, tour coach, double-deckers and airport buses in integral welded steel or coachwork on proprietary as well as various chassis. Productive capacity: 1400 buses per year.

Walter Vetter Co. Ringstrasse 28 (Postfach 2080) 7012 Fellbach Telex 07-254496 Tel. (0711) 589041 West Germany Hans-Juergen Bachmann, Sales Mgr. Siegbert Rosenkranz, Ch. Eng. Years experience: 50 Product line: Small, mid-size, standard, articulated and double-deck city transit, intercity, tour and luxury coaches as well as low floor and airfield apron buses, bookmobiles, mobile clinics, in integral welded steel con-struction or coachwork on various chassis. ____ Transportation Equipment Development Co. 22 Monument Square Portland, Maine 04101 Telex 944311 Tel. (207) 772-1973 H. T. Hawkes, President ____ AB Volvo, Bus Division S-405 08 Gothenburg, Sweden Telex 27000 Tel. (031) 59.00.00 Rolf Oberg, Project Mgr. 81500-HB1M Rolf Soderhielm, President Years experience: 49 Product line: Chassis for single articulated and double-deck buses Productive capacity: 5500 units per year. Volvo of America 20700 Greenfield Road Oak Park, MI 48237 Tel. (313) 967-0555 Kirby Gingerich Volvo of America Building 8 Rockleigh, NJ 07647 Tel. (201) 768-7300 Con Kardash

A-8

APPENDIX B

ARTICULATED TRANSIT BUSES:

DESIGN, DIMENSIONAL & PERFORMANCE CHARACTERISTICS

Companies Represented

Crown Coach Corp. (Ikarus)

NV Carrosseriefabriek Den Oudsten & Zonen

.

DAF Bus Division

Daimler-Benz A. G.

DeSimon-INBUS

Enasa (Pegaso) Bus Division

General Motors of Canada LTD, Diesel Division

GMC Truck & Coach Division

OAF - Graef & Stift A. G.

S. A. Louis Heuliez

Lex Vehicle Engineering Ltd.

Leyland Vehicles Ltd.

Magirus - Deutz A. G. (Iveco)

M.A.N. Truck and Bus Corp.

Neoplan USA

Renault Vehicles Industries

Scania Division of Saab-Scania

Steyr-Daimler-Puch A. G.

Van Hool Bus and Commercial Vehicle Works

Watter Vetter Company

AB Volvo, Bus Division

Table B-1. SUMMARY DESIGN, DIMENSIONAL & PERFORMANCE CHARACTERISTICS (1 of 3)

MANUFACTURER	MODEL	COUNTRY OF MFR.	U.S. AFFILIATE Or (JOINT VENTURE)	CALIF. CALIF.	COMPLIANCE FED. NOISE	FMVSS	VEH1CLE TYPE (PER ILLUST.)	OVER-ALL LENCTH METERS (FT.IN.)	ALL TH FT.IN.)	OVER-ALL WIOTH METERS (FT.IN.		OVER-ALL HEICHT METERS (FT.IN.)	L AR	ARTICULATION ANGLES HOR. VER.	ATION LES VER.
OAC (Autobuzel)		Rumania		Y	Å	Y	-	16.565	(54.4")	2.500 (98.	(98.4") 3.	3.040 (10	(10,0)	32 ⁰ 1(100
Oaimler-Benz A.G.	0 305 C	W. Germany	M-B No. Am.	n	n	Þ	4 TA	17.260	(18, 8, 1)	2.500 (98.	(98.4") 2.	2.941 (9181)		47 ⁰ 1(100
Carr. Oen Oudsten N.V.	Merc-B 0317	Netherlands		n	n	D	1	17.960	(58'11")	2.500 (98.	(98.4") 3.	3.150 (10	(10'4'')		
ENASA (Pegaso)	6031 A/2	Spain		Л	n	n	1 T	16.500	(54'2")	2.450 (96.	(96.5")				
De Simon S.P.A. (Inbus)	Inbus AS 250	Italy		л	n	D	4 TA	17.440	(22 1 311)	2.500 (98	(98.4") 3.	3.040 (10	(10.0.)	47 ⁰ 1(100
Ceneral Motors Canada Ltd.	TA60102N	Canada	CMC	¥	¥	¥	4	18.288	(,09)	2.590 (102")		3.029 (9'	("11"9)	45 ⁰ 10	100
CMC Truck and Coach	R10-204 R20-204	USA		۲	¥	¥	4	17.068 18.592	(56') (61')	2.590 (102") 2.590 (102")		3.124 (10 3.124 (10	(10'3")	47 ⁰ 16	16 ⁰
Craef & Stift A.C.	GS CU 280M18	Austria		Y	¥	л	1 & 5 TA	18.000	(165)	2.500 (98.	(98.4") 3.	3.010 (9'	(01.6)	47 ⁰ 8	°80
Louis Heuliez S.A.	0 305 C	France		n	n	л	4 TA	17.335	(56' 10'')	2.500 (98.	(98.4") 2.	2.984 (9'	7 (6.6)		10°
Ikarus	IK 286	Hungary	(Crown Coach)	Y	Y	¥	1 TA	18.210	(6.65)	2.590 (102")		3.150 (10	(39 ⁰ 15	15 ⁰
Lex Vehicle Eng. Ltd.	0 305 C	England		л	D	л	1 & 4 T	17.335	(01.95)	2.500	(98.4") 3.	3.048 (10	(10.0.)	47 ⁰ 10	10°
Leyland Vehicles Ltd.	OAB	England		n	л	n	1	17.335	(56'10")	2.500 (98.	(98.4") 3.	3.200 (10	(10.6") 4	45° 10	10°
Magirus-Oeutz A.C.	SH170	W. Cermany		n	л	л	5	16.700	(1.6.191)	2.500 (98.	(98.4") 3.	3.200 (10	(10'6") 4		13°
M.A.N. Truck & Bus Corp.	SG220-16.5	USA		Y	Y	Y	1 T	18.251	(59'10")	2.578 (101	(101.5") 3.	3.175 (10	(10'5") 3	32 [°] 10 [°]	0
Neoplan USA	N421	USA		¥	¥	¥	4	18.374	(2.500 (98.	(98.4") 3.	3.038 (10	(10.01)		
Renault Vehicles Ind.	PR180	France	Mack Trucks	¥	n	'n	6 TA	17.335	(10.10)	2.500 (98.	(98.4") 2.	2.890 (9	(01.6)	51 ⁰ 7	70
Saab-Scania	112A	Sweden	. Saab America	¥	Y	Y	4	17.434	(57'2")	2.590 (102")		3.139 (10	("6,01)		
Steyr-Daimler-Puch A.G.	SG 18 HUA 250	Austria	Trans Bus of Am.	л	л	n	4 T	18.135	(5.65)	2.500 (98.	(98.4") 3.	3.111 (10	(1013") 4	43 ⁰ 12 ⁰	0
Van Hool Bus Works	AG 280	Belgium		Y	Y	Y	3 TA	17.340	(56'10") 2.490	2.490 (98")		3.150 (10	(10'4") 3		°%
Walter Vetter CmbH	18R	W. Cermany	Trans. Eqpt. Dev.	Y	٢	Y	1 TA	18.000	(165)	2.500 (98.	(98.4") 3.	3.300 (10	(10.10") 4	45°5	°0
AB Volvo (Hess Coach)	BIOM	Sweden	Volvo Amer.	¥	¥	×	I TA	18.288 16.800	(60'1'') (55')	2.590 (102") 2.438 (96")		3.175 (10 3.150 (10	(10'5") 4	48° 10°	0
-					ت ک د										
						1			1				-		1

T = Electric Trolleybus version available TA = Auxillary thermal power unit available with trolleybus SUMMARY DESIGN, DIMENSIONAL & PERFORMANCE CHARACTERISTICS (2 of 3) jable B-2.

		DOOR	NOOP UIDTH	19419	PINCE CTED	FIRST	417	INTERIOR	- 80	F1.008		oUTSTDE	MAX		COPR WEICHT	-	UREFECTIATE
MANUFACTURER	ТЗООМ	M.	. NI	NM.			ELINC.	HEADROOM M. 1N		MM. I	. N	TURNING RADIUS M. FT.IN.	SE CA (ST		KG, CLBS.		LIFT AVAIL.
DAG (Autobuzel)		1.200	1.200 (47.2")	360	(14.2")			2.010 (7	(79.1")	1555 ((37.6")	11.500 (37'9'')	n.) 52	1 3	13,000 028,	(28,600)	n
Daimler-8enz A.G.	0 305 G	1.250	(49,20)	328	(12.9")			2.100 (8	(82.7")	718 (:	(28.3")	11.250 (36'10'')	(0") 66 (101)		13,000 (28,	(28,600)	ŋ
Carr. Den Oudsten N.V.	Merc-B 0317	1.13	(44,4")	345	(13.5")			2,000 (7	(78,7")	930 ()	(36.6") 1	12.000 (34141)	09 (14	4,150 (31,	(31,130)	z
ENASA (Pegaso)	6031 A/2											(2,000 (39.4%)	¹ 73				N
De Simon S.P.A. (Inbus)	1nbus AS 250	1.160	(45.6")	350	(13,7")			2.100 (8	(82.7")	750 (3	(29.5") 1	12.000 (39.4")	(1) 13 (97)		15,525 (34,	(34,155)	Y
General Motors Canada Ltd.	TA60102N	1.074	(42,34)	343	(13.5")	244 ((1.994 (7	(78.5")	850 (3	(33.5") 1	13,280 (43.6")	10 76	15	15,086 (33,	(33,260)	¥
GMC Truck and Coach	R10-204 R20-204	0.710 1.170	(28")FR. (46")RR.	330	(€1)	200 ((8")	2.032 (8	(80")	864 (3	(76)	N/A	73 65				*
Graef & Stift A.G.	GS CU 280M18	1.250	(49,2")	304	(12")			2.045 (8	(80.5")	860 (3	(33.8") 1	11.000 (36'1")	") 36 (123)	_	13,900 (30,	(30,580)	٢
Louis Heuliez S.A.	0 305 C	1.290	(50,7")	339	(13.3")			2.140 (8	(84.2")	729 (2	(28.7")	11.250 (36'10")	0") 64 (136)		12,900 (28,	(28,380)	z
lkarus	1K 286	1.220	(484)	370	(14.5")	290 ((11.5")	1.980 (7	(78")	C) 076	(37")	12,190 (40'0'')	74	16	16.477 (36.	(36,250)	٢
Lex Vehicle Eng. Ltd.	0 305 C	1.200	(47.2")	339	(13,3")			2.172 (8	(85.5")	729 (2	(28.7") 1	11.250 (36'10")	0") 67 (113)		25,729* (56,672)	672)	¥
Leyland Vehicles Ltd.	DA8	1.200	1.200 (47.2")	383	(15.1")			2.100 (8	(82.7")	614 (3	(36") 1	11.300 (37'1")	") To Suit		24,000 (52,910)	(016)	z
Magirus-Deutz A.G.	SH170	1.220	(1811)	325	(12.8")			2.100 (8	(82.7")	740 (2	(29.1") 1	10.900 (35.9")	(107) 63 (107)		24,700% (54,340)	340)	¥
M.A.N. Truck & Bus Corp.	SG220-16.5	1.240	1.240 (49.2")	367	(14,4")	325 ((12,8")	1.981 (7	(78")	909 (3	(35.8") 1	12.620 (41.5")	(1) 65	17	17,181 (37,800)	800)	¥
Neoplan USA	N421	1.000	(39,3")	3 50	(13.8")			2,150 (8	(84,6")	750 (2	(29.5") 1	12.649 (41.7")	17 (*				γ
Renault Vehicles Ind.	PR180	1.200	1.200 (47.2")	363	(14,3")			2.190 (Н	(#6.2")	619 (2	(24.4") 1	11.640 (38:3")) 68	26	6,200* (57,640)	(079	٢
Saab-Scania	112A	1.200	1.200 (47.2")	350	(13.7")	250 ((8)	2.100 (8	(82.7")	670- (2 930 (3	(26.3")-1	12,000 (39'4'')	···) 56-68	16	16,030 (35,266)	266)	~
Steyr-Daimler-Puch A.G.	SG 18 HUA 250	1.25	(+6 * 5 +)	328	(12.9")			2.190 (8	(86.2")	680 (2	(26.7") 1	11.000 (3611")	(1) 48 (132)	-	4,360 FTL,3921	(265	~
Van Hool Bus Works	AG 280	1.150	(45,3")	3 50	(13.8")			2.325 (9	(5 1 6)	680 (2	(26.8")	10.765 (35.4")) 51	24	24,000* (52,800)	(008	γ
Walter Vetter GmbH	1 8R	1.200	(47,2")	380	(14,9")	320 ((12.5")	2.000 (78.	(920 (3	(30.2") 1	12.000 (.	To Suit		25,000-(55.000)	(000	7
A8 Volvo (Hess Goach)	810M	1,200	1.200 (47.2")	355	(14")			2.150 (8	(84,6")	787 (3	(31")	("4'-90) (39'-4")) 68	23	23,732~ (52,210)	(012	Y
										Number	oť	seats varies with seat		pitch and n	no. of doors	r.s	
		_														-	

3)
ч.
C
C
CHARACTERISTICS (3 of
& PERFORMANCE
DESIGN, DIMENSIONAL
MARY DESIGN, D
S UMMARY
Table B-3.

AIR COND. CAPACITY TONS			16 KW				13 Ton			10.3 Ton			10 Ton									
AIR COND. CA MAKE					Optional					Carrier 10		Optional	Konvekta 10		Optional				Optional	Optional	Optional	
	c. Air	c. Alr NO	E KONI	c. Alr			ge) GMC			Car			Kon	Tran	Opt				Opt	Opti	Opt	
BRAKE TYPE	Oual Circ. Air	Dual Circ. Air	Pneumatic	Oual Circ. Air	Oual Circ. Air	Air	Aır (Wedge)	Air	Air	S-Cam		Air S-Cam	Air		Alr	Air	Alr		Air	Alf	Air	
BRAKE MFR.		D-B	Mercedes-Benz	MCM	Perrot	Bendix-West.	Rockwell	Westinghouse	D-B	Rockwe11		Leyland	Rockwell	M.A.N.	M.A.N.		Scania	Westinghouse		Westinghouse		A - Air S - Steel Springs T - Torsion Bar
SUSPENSION TYPE	A	A	A	A	A	×	۷	A	A	K	A	¥	A&T	A	×	A&S	V	<	A	A	A/T	A - ALF S - Stee T - Tors
AXLE MFR.	Baba	0-B	Mercedes-Benz		Sicca/Padova	Rockwell	GMC & Rockwell	M.A.N.	D-B	Rockwell		Leyland	Magirus	M.A.N.	M.A.N.	Renault	Scania	Steyr	M.A.N.	Mercedes-Benz	Volvo	
RETARDER TYPE	Hydraulic	Hydraulic			Hydraulic N	El. Mag.	Hydraulic	Hydraulic	0-B	Hydraulic	Hydraulic	Hydraulic	Hydraulic	Hydraulic	Hydraulic	Hydraulic	Automatic	Hydraulic	Hydraulic	El. Mag.	El. Mag.	
RETARDER Make	Voith	D-B			Voith	Telma	Allison	Voith	0-B	Allison	0-B	Leyland	Voith	Renk	Optional	Voith	Scania	Voith	Voith	Telma	Telma	
TRANSM1SS10N MODEL	D851	W4 A 110R	W3D 080R	RV - 38	01 Wa 854	V735	V735D	0851	W 3D 080K	HT-740D	W 30 08/R	Hydracyclic	D1WA 854	0874A	HT 740	D854	CAV 762	854	D854	Optional	Automatic	
TRANSMISSION MAKE	Voith	D-B	D-B	Wilson	Voith	Allison	Allíson	Voith	0-B	Allison	0-B	Leyland	Voith	Renk	Allison	Voith	Scania	ZV or Voith	Voith	Opt ional	ZF or Allison	
SPEED MPH	55	55	55	53	53	55	53	44	44	55	44	54	55	55	55	\$5	99	47	47	62	56	
мах. КРН	88	88	06	85	85	06	85	70	70	88	70	86	88	88	88	88	107	25	76	100	06	
ENGINE MODEL	DKTL 1160	OM407NA	OM 355	9107.00	6-250CV	8V-71N	6V92TA	D 2566 MTUM	H704 M0	NNHTC-290	H 407H	TL 11 H	BF 8 L 413F	D2566 MLUM/US	8v92	M1PS 062030	104 1104		02566		ТНD100DC	
MAIN ENGINE MAKE	DAF	Daimler~Benz	Daimler-Benz	Pegaso	Fiat	Detroit D	Decroit D	M.A.N.	Daimler-Benz	Cummins 6	Daimler-Benz	Leyland	Kloeckner-Deutz BF 8 L 413F	M.A.N. AC	Oerroit D	Renault	Scania	Str-Da.m-Puch	M.A.N.	Daimler-Benz	۷۰۱۷۵	
MODEL		0 305 G	Merc-B 0317	6031 A/2	lnbus AS 250	TA60102N	R10-204 R20-204	CS CU 280M18	0 305 C	1K 286	0 305 G	DAB	SH170	SG220-16.5	N421	PR180	112A	SG 18 HUA 250	AG 280	18R	BLUM	
MANUFACTURER	DAC (Autobuzel)	Daimler-Benz A.G.	Carr. Den Oudsten N.V.	ENASA (Pegaso)	Oe Simon S.P.A. (lnbus)	Ceneral Motors Canada Ltd.	CMC Truck and Coach	Craef & Stift A.C.	Louis Heuliez S.A.	lkarus	Lex Vehicle Eng. Ltd.	Leyland Vehicles Ltd.	Magırus-Deutz A.G.	M.A.N. Truck & Bus Corp.	Neoplan USA	Renault Vehicles Ind.	Saab-Scaniu	Steyr-Daimler-Puch A.G.	Van Hool Bus Works	Wulter Vetter CmbH	AB Volvo (Hess Coach)	

CROWN COACH CORPORATION CROWN - IKARUS

MANUFACTURER'S PROFILE

Α.	FIRM CROWN COACH CORPORATION
	ADDRESS 2500 E. 12th St.
	Los Angeles
	California 90021
С.	TELEPHONE (213) 627-4021
	TELEX 1-910-321-2368 E. CABLE
F.	OTHER MANUFACTURING SITES
G.	NUMBER OF YEARS EXPERIENCE PRODUCING BUSES 55
н.	BRIEF DESCRIPTION OF PRODUCT LINE ARTICULATED CITY TRANSIT
	COACHES; INTEGRAL, HEAVY-DUTY SCHOOL COACHES (35 and 40 foot); CUSTOM
	UTILITY COACHES; CUSTOM FIRETRUCKS
I.	PRODUCTIVE CAPACITY 150 Articulated 600 school/utility BUSES PER YEAR
J.	COMPLIANCE WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	YES X NO UNKNOWN
К.	COMPLIANCE WITH NOISE STANDARDS
	YES X NO UNKNOWN
L.	COMPLIANCE WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS
	YES X NO UNKNOWN

M. VEHICLE TYPE

X Front end horizontal under floor axial engine with the second axle powered.

Vertical front engine with second axle powered.

Side mounted engine with second axle powered.

Rear engine with third axle powered.

Rear engine with second axle powered.

Engine immaterial, with hydrostatic or electric transmission.

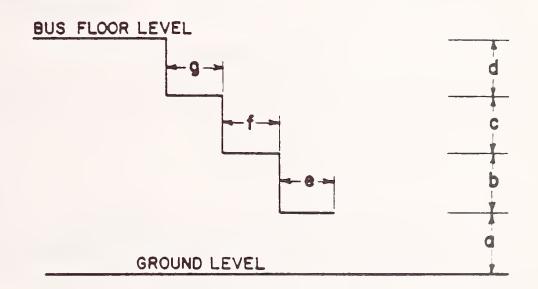
APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED

- A. Bus Manufacturer <u>CROWN COACH CORPORATION</u>
- B. Bus Model Number <u>CROWN-IKARUS 286</u>

C. Dimensions

1.	Overall Length	М.	59	_Ft.	9	_In.
2.	Overall Width	М.	8	_Ft.	6	_In.
3.	a. Overall Height (maximum)			м.	124	_In.
	b. Height (main roof line)			м.	118	_In.
4.	Angle of Approach				8	_Deg.
5.	a. Breakover Angle Tractor				8	_Deg.
	b. Breakover Angle Trailer				8	_Deg.
6.	Angle of Departure				8	_Deg.
7.	Articulation Angles					
	a. Horizontal				39	_Deg.
	b. Vertical				15	_Deg.


CROWN COACH CORP. (WITH IKARUS) - MODEL 286 USA & HUNGARY

8. Doorway Clear Opening (Including grab handles)

a.	Front	Width	Μ.	48	_In.
		Height	M.	86	_In.
b.	Center (if provided)	Width	M .	48	_In.
		Height	M	86	_In.
с.	Rear	Width	Μ.	48	_In.
		Height	M .	86	_In.

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

.

	Front Door	Center Door	Rear Door
a. Empty Bus	mm. <u>145</u> in.	mm. <u>145</u> in.	
Kneeling bus	mm. <u>115</u> in.	mm. <u>14</u> in.	mm. 14-5/8in.
b.	mm. <u>75</u> in.	mm. <u>7½</u> in.	mm. 7½ in.
с.	mm7½ in.	mm. <u>7½</u> in.	mm. 7½ in.
d.	mm7½_in.	mm. <u>7½</u> in.	mm. 7½ in.
e.	mm. <u>10</u> in.	mm. <u>10</u> in.	mm. 10 in.
f.	mm. <u>10</u> in.	mm. <u>10</u> in.	mm. 10 in.
g •	mm. <u>10</u> in.	mm. <u>10</u> in.	mm. 10 in.

10. Interior Head Room (center of aisle)

a. Front Axle Location	nm .	78	_in.
b. Drive Axle Location		78	_in.
c. Trailer Axle Location		78	in.

11. Aisle Width

Between Transverse Seats (minimum) ____mm. 22 in. (using 36" wide, forward facing seats) 12. Floor Height Above Ground (at each door)

a. Front Door	mm37	in.
b. Center Door (if provided)	mm37	in.
c. Rear Door	mm. 37	in.

13. Horizontal Turning Envelope

a. Outside Body Turning Radius including bumper

b. Inside Turning Radius

M. 20 Ft. 6 In.

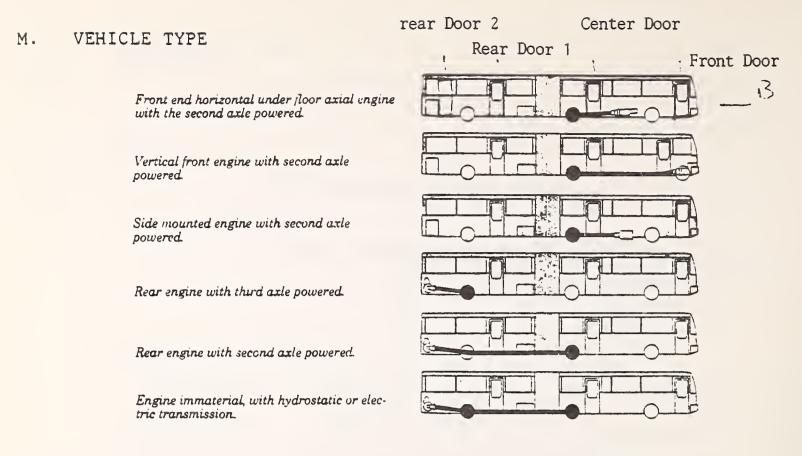
c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer

M. 2 Ft. 4 In.

14. Wheel Bases

a.	Tractor	 <u>M.</u>	18	_Ft.	8 ¹ 4	_In.
b.	Trailer	 м	23	_Ft.	44	_In.
с.	Total	 _м	53	_Ft.	1/2	_In.

15. Seats


a. Total Number of Seats <u>74 (Maximum density)</u>
b. Minimum Knee to Hip Room <u>27 (Using hard transit seats)</u>
c. Minimum Foot Room

D.	Full ComplementWeight of Busof Fuel, Oil, WaterAt GVWR
	1. On Front AxleKg. <u>13,000</u> LbsKg.16,000 Lbs.
	2. On Center AxleKg. <u>13,850</u> LbsKg. 2 <u>2,000</u> Lbs.
	3. On Rear Axle Kg. 9,400 Lbs. Kg. 16,000 Lbs.
	4. TOTALKg. <u>36,250</u> LbsKg. <u>54,000</u> Lbs.
E.	Main Engine
	1. Manufacturer <u>CUMMINS DIESEL</u>
	2. Type 6 cylinder, in-line 3. Model <u>NHHTC-290 (Standard)</u> (S8166) 290 (Std)
	4. Net S.A.E./Horsepower 290 (Std) 350 (Opt) HP
	at <u>2100</u> RPM
	5. Turbo Charge, Make & Type <u>CUMMINS</u> (@ Max. GVW) <u>55 MPH (w/Std 4.63 Axle</u>
	6. Maximum Vehicle Speed /KPHKPH62_MPH(w/Opt 4.11 Axle
F.	Transmission
	1. Manufacturer ALLISON
	Automatic, with locking 2. Type torque converter 3. Model <u>HT-740D</u> 4. Speeds 4
	5. Retarder, Make, Type, and Size <u>Allison, hydraulic, 365 horsepower</u>
G.	Axle, Front
	1. Manufacturer <u>ROCKWELL</u>
	I-Beam, 2. Type steered 3. Model FL-931 4. GAWR Kg.18,000 Lbs.
н.	Axle, Center Drive
	1. Manufacturer ROCKWELL
	Drive, 2. Typehypoid, 3. Model 59000 4. GAWR Kg. 23,000Lbs.
	single reduction
J.	Axle, Rear
	1. Manufacturer ROCKWELL
	2. Type steered 3. Model FL-931 4. GAWR Kg. 18,000 Lbs.

Κ.	Suspension
	Air <u>All Axles</u> Steel Spring Torsion Bar
L.	Brakes
	1. Make ROCKWELL Type S-CAM
М.	Interior Lighting
	1. Type Luminator flourescent, individual ballast
	2. Number of Fixtures <u>16 (6 foot, single tube)</u>
Ν.	Tires
	1. Manufacturer Michelin or Goodyear
	2. Size 13/80R22.5 tubeless, 18PR
	3. Type Radial ply, tubeless, low profile
-	
0.	Air Conditioning
	1. Make <u>Carrier</u> 2. Model <u>CI-286</u> 3. Capacity 10.3 ton Transicold
Ρ.	Kneeling Feature Available Yes <u>x</u> No
Q.	Wheelchair Lift Available Yes <u>x</u> No
R.	Vehicle available as Electric Trolley Bus? Yes <u>x</u> No
	1. Model
	2. Auxiliary Thermal Power Plant? Yes <u>x</u> No <u>KW</u>

MANUFACTURERS PROFILE

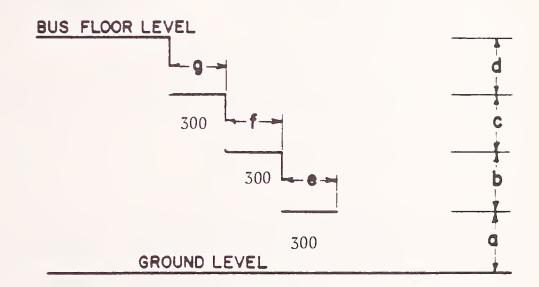
Α.	FIRM <u>NV Carrosseriefabriek Den Oudsten & Zonen</u>
Β.	ADDRESSUtrechtsestraatweg 112A
	WOERDEN
	HOLLAND .
С.	TELEPHONE 03480 - 1 2 3 4 5
D.	TELEX 47835 E. CABLE OUDSTEN-WOERDEN
F.	OTHER MANUFACTURING SITES
G.	NUMBER OF YEARS EXPERIENCE PRODUCING BUSES
н.	BRIEF DESCRIPTION OF PRODUCT LINE
	<u>semi-integral steel frame with polyester panel sections on every chassis-type</u>
I.	PRODUCTIVE CAPACITYBUSES PER YEAR
J.	COMPLIANCE WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	XEE XXX UNKNOWN
к.	COMPLIANCE WITH NOISE STANDARDS
	YES XXX XXXXXXXXXXXX
Ŀ.	COMPLIANCE WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS
	XXEVER NOX UNKNOWN

APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED

A. Bus Manufacturer <u>NV Carrosseriefabriek Den Oudsten & Zonen</u>

- B. Bus Model Number Mercedes Benz 0317 and Schenk GOB2 8000/1KU
- C. Dimensions


1.	Overall Length 17,96	Μ.	 _Ft.		_In.
2.	Overall Width 2,5	Μ.	 Ft.	-	_In.
3.	a. Overall Height (maximum)		 м.		In.
	b. Height (main roof line)		 M.		_In.
4.	Angle of Approach			-	_Deg.
5.	a. Breakover Angle Tractor				Deg.
	b. Breakover Angle Trailer				Deg.
6.	Angle of Departure			-	_Deg.
7.	Articulation Angles				
	a. Horizontal				_Deg.
	b. Vertical			-	_Deg.

CARR-- (2)

8. Doorway Clear Opening (Including grab handles)

a.	Front	Width	_1,13	_М.		_In.
		Height	2,29	_M.		_In.
Ъ.	Center (if provided)	Width	1,13	M.	_	_In.
		Height	2,29	_M.	-	_In.
с.	Rear (Door 1 and 2)	Width	0,67	_M.	-	_In.
		Height	2,29	_M.	_	In.

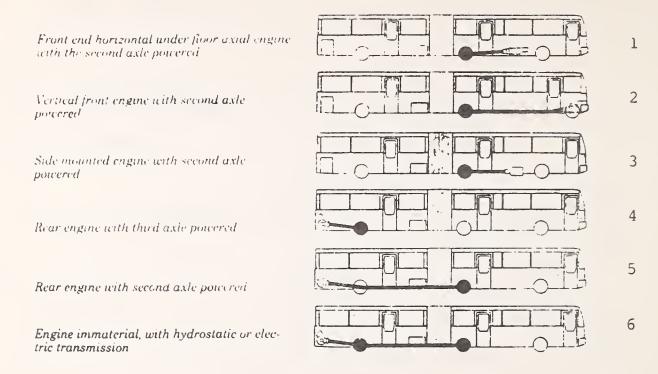
9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

]	Rear	
		Fr	ont	Doo	r	Center	Dco	<u>r</u> .	D <u>oor 1</u>	Door	2
a.	Empty Bus	<u>345</u>	mm.		_in.	<u>345</u> mm.		_in.	<u>345</u> mm.	345	XX: .mm
	Kneeling bus		mm.		_in.	mm .		_in.	mm.		XX .mm
Ъ.		<u>195</u>	mm.	-	_in.	<u>195</u> mm.	_	_in.	<u>195</u> mm.	195	XX .mm
c.		<u>195</u>	mm.		_in.	<u>195</u> mm.		_in.	<u>195</u> mm.	195	XX .mm
d.		195	mm.	_	_in.	<u>195</u> mm.		_in.	<u>195</u> mm.	195	XX .mm
e.		205	mm.	_	_in.	<u>205</u> mm.	_	_in.	<u>205</u> mm.	205	XX .mm
£.		205	mm.		_in.	205 mm.		_in.	205 mm.	205	XX .mm
g.		205	mm.		_in.	205 mm.		_in.	205 mm.	205	XX .mm

CARR- (3)

10.	Interior Head Room (center of aisle)
	a. Front Axle Location <u>2000 mm</u> in.
	b. Drive Axle Location 2000 mm in.
	c. Trailer Axle Location <u>2000 mm</u> . <u>-</u> in.
11.	Aisle Width
	Between Transverse Seats (minimum) <u>400 mm. – in.</u>
12.	Floor Height Above Ground (at each door)
	a. Front Door 930 mm in.
	b. Center Door (if provided) 930 mm in.
	c. Rear Door 1 930 mm in.
13.	d. Rear Door 2 950 mm Horizontal Turning Envelope
200	a. Outside Body Turning Radius including bumper
	12 M Ft In.
	b. Inside Turning Radius
	6,5 M Ft In.
	c. Maximum Swing Out Radius of Right Rear curbside
	corner of Trailer
	<u>95</u> MFtIn.
14.	Wheel Bases
	a. TractorMFtIn.
	b. Trailer <u>7,15</u> M. <u>-</u> Ft. <u>-</u> In.
	c. Total <u>12</u> M. <u>-</u> Ft. <u>-</u> In.
15.	Seats
	a. Total Number of Seats 60
	b. Minimum Knee to Hip Room <u>280 mm</u>
	c. Minimum Foot Room <u>300 mm</u>

D.	Full Complement Weight of Bus of Fuel, Oil, Water	At GVWR
	1. On Front Axle <u>5340 Kg Lbs. 65</u>	<u>00 Kg. –</u> Lbs.
	2. On Center Axle <u>4760</u> Kg. <u>-</u> Lbs. 100	00 Kg Lbs.
	3. On Rear Axle 4050 Kg Lbs. 65	00 Kg Lbs.
	4. TOTAL 14150 Kg Lbs. 230	000 KgLbs.
E.	Main Engine	
	1. Manufacturer Mercedes Benz	
	2. Type OM 355 3. Model	horizontal
	4. Net S.A.E. Horsepower	
	atRI	PM
	5. Turbo Charge, Make & Type no	
	6. Maximum Vehicle Speed 90 KPH	нмрн
F.	Transmission	
	1. Manufacturer Mercedes Benz	
	2. Type W3D 080 R 3. Model	4. Speeds <u>3</u>
	5. Retarder, XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
G.	Axle, Front	
	1. Manufacturer Mercedes Benz	
	2. Type 3. Model 4. GAW	RKgLbs
н.	Axle, Center Drive	
	1. Manufacturer <u>Mercedes Benz</u>	
	2. Type 3. Model 4. GAW	
J.	Axle, Rear	
	1. Manufacturer <u>Mercedes Benz</u>	
	2. Type 3. Model 4. GAW	R _ Kg Lbs


Κ.	Suspension							
	Air Yes Steel Sprin	ng T	orsion Bar <u>No</u>					
L.	Brakes Mercedes-Benz 1. Make Bosch/Westinghouse	Typepneu	matic					
М.	Interior Lighting							
	1. Type	Fluorescence tub	es					
	2. Number of Fixtures	14 x 40W	*****					
N.	Tires	Tractor	Trailer					
	1. Manufacturer	Michelin	Michelin					
	2. Size	12-22,5	13/70-22,	5				
	3. Type	-		-				
0.	Air Conditioning							
	1. Make KONI 2. Mc	odel	3. Capacity	16 kW				
Ρ.	Kneeling Feature Available	20278/X	No					
Q.	Wheelchair Lift Available	X02% X	No					
R.	Vehicle available as Elect	ric Trolley Bu	s? YXXXX No	_				
	1. Model							
	2. Auxiliary Thermal Power	Plant? Yes	No KW					

DAF TRUCKS B.V. DAF BUS DIVISION

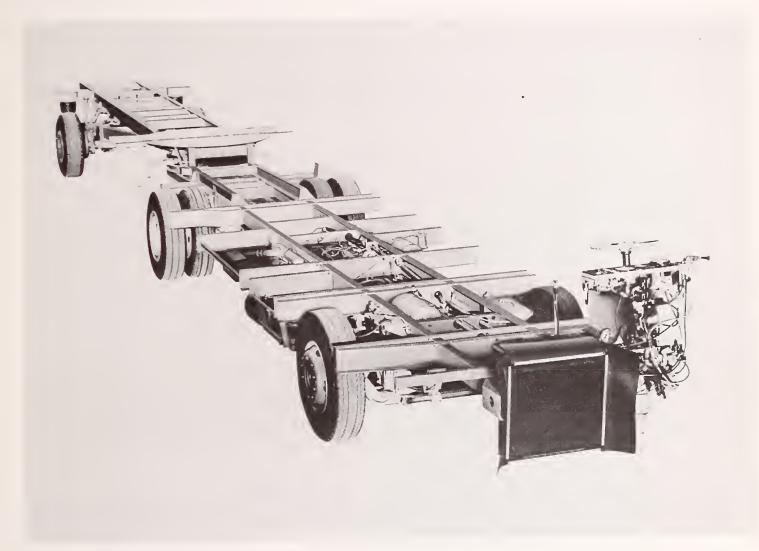
MANUFACTURERS PROFILE

A .	FIRM	DAF Bus d	livision, D	AF Trucks b	.V.	
		Geldropse				
		5645 TK E				
С.	TELEPHONE	040 - 143	3075			
D.	TELEX	51085 DAE	<u>nl</u> E. CABL	E DAF Truck	S	
F.	OTHER MANUF	FACTURING SIT	ES <u>Oeve</u>	<u>l in Belgiu</u>	<u>m</u>	
G.	NUMBER OF Y	YEARS EXPERIE	NCE PRODUC	ING BUSES	35	
Η.	BRIEF DESCH	RIPTION OF PR	ODUCT LINE	DAF Bus pr	oduces b	us- and
	coachchass	is, mid- and	rear engin	ed, includi	ng artic	ulated buses
	in a diese	lengine range	e from 156	hp to 260 h	p	
Γ.	PRODUCTIVE	CAPACITY	500	BUSE	S PER YE.	AR
.1.	COMPLIANCE	WITH U.S. OR	CALIFORNI	EMISSION	STANDARD	S
	YES	NO	UNKNOWN <u>x</u>	according	to EEC	regulations
<u>K</u> .		WITH NOISE S				
	YES	NO	UNKNOWN x	according	to EEC	regulations
L.	COMPLIANCE	WITH FEDERAL	MOTOR VEHI	CLE SAFETY	STANDAR	DS
	YES	NO	UNKNOWN ×			

M. VEHICLE TYPE

APPENDIX C

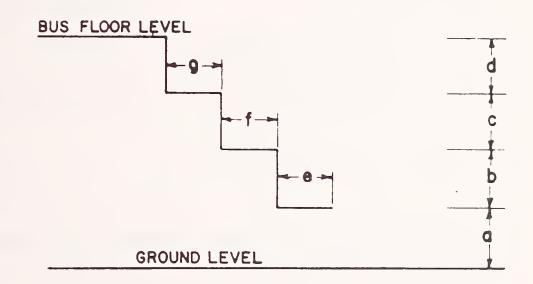
TECHNICAL INFORMATION TO BE FURNISHED


Α.	Bus	Manufacturer DAF (buschassis manufactu	rer)						
Β.	Bus	Model Number							
С.	Dimensions								
ſ	1.	Overall Length 17.880 M.	_Ft.	In.					
	2.	Overall Width 2.400 M.	_Ft.	In.					
	3.	a. Overall Height (maximum) 0.91	_ M.	In.					
		Ŋ. Height (main roof line)	_ М.	<u>7,1</u> In. (1 : 8)					
	4.	Angle of Approach		Deg.					
	5.	a. Breakover Angle Tractor		Deg.					
		b. Breakover Angle Trailer		Deg.					
	6.	Angle of Departure		Deg.					
	7.	Articulation Angles							
		a. Horizontal		<u>22,5</u> Deg.					
		b. Vertical		Deg.					

DAF- (2)

NO

DAF TRUCKS B.V. (BUS DIVISION) BUS CHASSIS MANUFACTURER


HOLLAND

8. Doorway Clear Opening (Including grab handles)

а.	Front	Width	M	In.
		Height	M.	In.
Ь.	Center (if provided)	Width	M	In.
		Height	M	In.
с.	Rear	Width	M	In.
		Height	M	In.

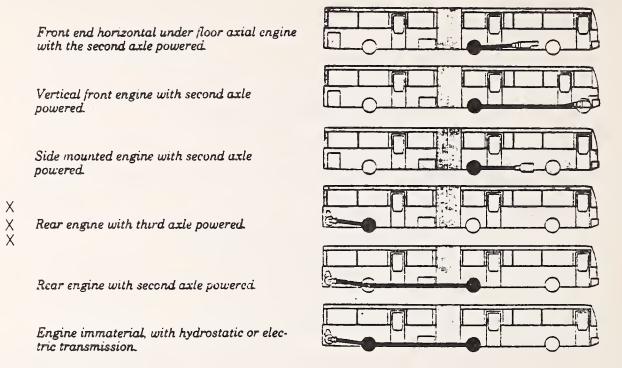
Step height from Ground, Step Riser Heights and Step Depths step height and depth to be measured at center of step).

		Front Door		<u>Center Do</u>	oor	Rear Door	
a.	Empty Bus	mm	in.	mm	in	mm	in.
	Kneeling bus _	mm	in.	mm	in	mm	in.
b.	-	mm	in.	mm	in	mm	in.
с.	-	m	in.	mm	in	mm	in.
d.	-	mm	in.	mm	in	mm	in.
e.	_	mm	in.	mm	in	mm	in.
f.	_	mm	in.	mm	in	mm	in.
о <mark>с</mark> .	_	mm	in.	mm	in	mm	in.

10.	Interior Head Room (center of aisle)	
	a. Front Axle Locationmmin.	
	b. Drive Axle Locationmmin.	
	c. Trailer Axle Locationmmin.	
1¥.	Aisle Width	
	Between Transverse Seats (minimum)mmin.	
17.	Floor Height Above Ground (at each door)	
	a. Front Doormmin.	
	b. Center Door (if provided)mmin.	
	c. Rear Doormmin.	
13.	<pre># floor height above 1) front axle 9.10 mm 3) trailer axle 2) driven axle 9.40 mm Horizontal Turning Envelope 920 mm</pre>	:
	a. Outside Body Turning Radius including bumper	
	MFtIn.	
	b. Inside Turning Radius	
	MFtIn.	
	c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer	
	MFtIn.	
14.	Wheel Bases	
	a. TractorMFtIn.	
	b. TrailerMFtIn.	
	c. Total <u>M.</u> Ft. In.	
1/5.	Seats	
	a. Total Number of Seats	
	b. Minimum Knee to Hip Room	
	c. Minimum Foot Room	

DAF-	(2	•)
	~ ~	+ /

.


D.	chassis Weight of xBuxx	Full Complement of Fuel, Oil, Water	At GVWR	
	1. On Front Axle	2750 KgLbs.6500	_Kg	_Lbs.
	2. On Center Axle	4270 KgLbs 11600	_Kg	Lbs.
	3. On Rear Axle	1 <u>560 Kg.</u> Lbs.7100	_Kg	Lbs.
	4. TOTAL	8580 Kg. Lbs 25200	_Kg	Lbs.
E.	Main Engine			
	1. Manufacturer	DAF		
	2. Туре	DKTL 1160 3. Model betw	een le-2e	
	4. Net S.A.E. Hors	epower <u>252</u> HP cool		with piston
		at <u>2200</u> RPM	±11.9	
	5. Turbo Charge, M	ake & Type <u>K.K.K. 4 LG</u>	252 D 32.1	22
	6. Maximum Vehicle	Speed <u>+ 106 KPH</u>	MP	Ϋ́Η
		with tyres 12 x 22,5	and rear	axle reduction
F.	Transmission	4,11 : 1		
	1. Manufacturer	ZF		
	2. Type <u>5 HP 500 at</u>	itomati3. Model horizontal	4. Speed	s <u>5</u>
	5. Retarder, Make,	Type, and Size <u>integrate</u>	d ZF W 360	0
C	Axle, Front			
0.				
		DAF		
	2. Type <u>N 140</u> 3.	Model <u>• I</u> • 4. GAWR <u>65</u>	<u>00 </u> Kg. <u> </u>	Lbs.
н.	Axle, Center Drive			
	1. Manufacturer			
	2. Type <u>2255</u> 3.	Model 4. GAWR 110	<u>00 </u> Kg	Lbs.
J.	Axle, Rear			
	1. Manufacturer	DAF		
	2. Type <u>N 142</u> 3.	Model 4. GAWR 7.10	<u> </u>	Lbs.
		DAF- (5)		

	front suspension : 4 air bags type : Firestone
	rear suspension : 2 air bags per axle. type:continen
К.	Suspension tal
	Air Steel Spring Torsion Bar
L.	Brakes
	1. Make DAF Type mechanic pneumatic
И.	Interior Lighting (2 independant systems)
	1. Type
	2. Number of Fixtures
Ν.	Tires
	1. Manufacturer Michelin
	2. Size tractor D 22,5 trailor': E 22,5
	3. Type Pilote X
Ø.	Air Conditioning
	1. Make 2. Model 3. Capacity
Ρ.	Kneeling Feature Available Yes <u>No x</u>
Q.	from Wheelchair Lift Available Yesbody No builder
R.	Vehicle available as Electric Trolley Bus? Yes No x
	1. Model
	2. Auxiliary Thermal Power Plant? Yes No 🗴 KW
	nb: for completeness sake, the DAF Bus division of DAF Trucks B.V. produces only bus- and coach <u>chassis</u> . DAF as a company is not in the integral- or complete bus business. We depend on the specialised bodybuilders in a number of countries for bodies on DAF chassis.

MANUFACTURERS PROFILE

A. FIRM Daimler-Benz AG ADDRESS Daimler-Benz AG Β. Hanns-Martin-Schleyer-Str. 1 6800 Mannheim 31 W.-Germany С. TELEPHONE 0621 393 1 TELEX 462 131 dbm d E. CABLE D. F. OTHER MANUFACTURING SITES DB-AG, 7000 Stuttgart, W.-Germany (Passenger cars, Trucks, Tractors, Unimog) NUMBER OF YEARS EXPERIENCE PRODUCING BUSES ______ 1894 G. H. BRIEF DESCRIPTION OF PRODUCT LINE <u>Standard-City-Buses</u> Articulated-City-Buses, ACB-Trolley, Cross-County-Buses, Tourist-Coaches, Chassis, CKD-Versions PRODUCTIVE CAPACITY 3800 u. 1600 chassisBUSES PER YEAR for all typ I. COMPLIANCE WITH U.S. OR CALIFORNIA EMISSION STANDARDS J. YES NO UNKNOWN X COMPLIANCE WITH NOISE STANDARDS Κ. YES NO UNKNOWN X L. COMPLIANCE WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS YES NO UNKNOWN X

M. VEHICLE TYPE

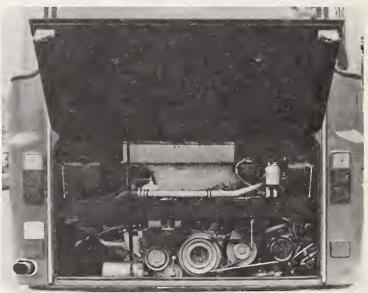
X X X

APPENDIX C

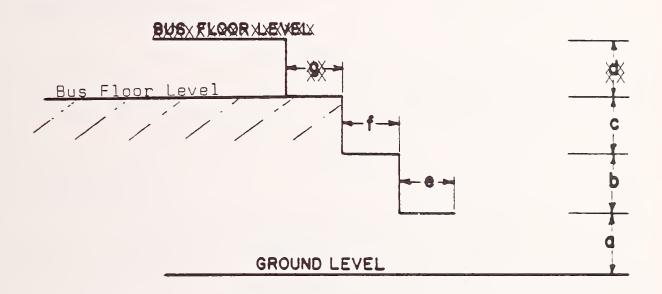
TECHNICAL INFORMATION TO BE FURNISHED

Α.	Bus	Manufacturer Daimler-Benz AG	
В.	Bus	Model Number 0 305 G	
С.	Dime	ensions	
	1.	Overall Length <u>17.260</u> M. <u>56.63</u> Ft. <u>679.5</u> In	. •
	2.	Overall WidthMFtIn	•
	3.	a. Overall Height (maximum) <u>2.941</u> M. <u>115.8</u> In	. •
		b. Height (main roof line) <u>2.903</u> M. <u>114.3</u> In	•
	4.	Angle of Approach <u>8⁰ 15</u> , De	g.
	5.	a. Breakover Angle Tractor) <u>device</u> De) Anti-jackknifing	g.
		b. Breakover Angle Trailer) see brochure!De	g.
	6.	Angle of Departure <u>8⁰ 10'</u> De	g.
	7.	Articulation Angles	
		a. Horizontal approx <u>. 10⁰ De</u>	g.
		b. Vertical 47° De	g.

DAIMLER-BENZ A.G. (MERCEDES-BENZ) - MODEL O 305 G W. GERMANY



DAIMLER-BENZ - MODEL 0 305 G W. GERMANY



8. Doorway Clear Opening (Including grab handles)

a.	Front	Width	1.250	_M.	49.2	_In.
		Height	2.020	М.	79.5	_In.
b.	Center (if provided)	Width	1.250	_M.	49.2	_In.
		Height	2.020	_M.	79.5	_In.
с.	Rear	Width	1.250	_M.	49.2	_In.
		Height	2.020	М.	79.5	In.

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

	Front Do	oor	Center	Door.	Rear I)00r
a. Empty Bus	<u>328 mm. 1</u>	<u>2.g</u> in.	<u>328 mm.</u>	<u>12.9</u> in.	3 <u>28</u> mm.	<u>12.9</u> in.
Kneeling bus	<u>328 mm. 1</u>	<u>2.g</u> in.	<u>328</u> mm.	<u>12.9</u> in.	3 <u>28</u> mm.	<u>12.9</u> in.
b.	<u>195 mm. 7</u>	<u>.67</u> in.	<u>195 mm.</u>	<u>7.67</u> in.	195 mm.	<u>7.67</u> in.
с.	<u>195 mm. 7</u>	<u>.67</u> in.	<u>195</u> mm.	<u>7.67</u> in.	<u>195 mm</u> .	<u>7.67</u> in.
x4x × × × × × ×	<u> </u>	X_in.	<u>×</u> mm.	X_in.	<u>×</u> _mm.	in.
e.	410 mm. 1	<u>6.1</u> in.	<u>305</u> mm.	<u>12.0</u> in.	<u>305</u> mm.	<u>12.0</u> in.
f.	<u>410 mm. 1</u>	<u>6.1</u> in.	<u>305</u> mm.	<u>12.0</u> in.	<u>305 mm</u> .	12.0in.
\$ * × × × × × ×	<u> </u>	<u>×</u> in.	mm.	X_in.	× mm.	X_in.

10. Interior Head Room (center of aisle)

a. Front Axle Location	2100		82.7	in.
Center b. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	2100	m m .	82.7	in.
c. XXXXXXXX Axle Location	2000	mm.	78.7	in.

11. Aisle Width550 front21.7 frontBetween Transverse Seats (minimum)370 rear14.6 rearIn.in.14.6 rear

12. Floor Height Above Ground (at each door)

a. Front Door	718	m.	28.3	in.
b. Center Door (if provided)	_718		28.3	_in.
c. Rear Door	718		28.3	in.

13. Horizontal Turning Envelope

a. Outside Body Turning Radius including bumper

11.250 M. 36.91 Ft. 442.9 In.

b. Inside Turning Radius

<u>4.700 M. 15.42 Ft. 185.0 In.</u>

c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer

0.160 M. 0.52 Ft. 6.3 In.

14.	Whe	eel Bases						
	a.	Front/Center XXAXXXX		м.	18.27	_Ft.	220.5	In.
	ь.	Center/Rear XXXXXX	6.150	_M.	20.18	_Ft.	242.1	_In.
	c.	Total	11.750	_M.	38.55	_Ft.	462.6	_In.

15. Seats

a. Total Number	of Seats	<u>1/58 or</u> 1/66 or 1/48
b. Minimum Knee	to Hip Room	<u>. 650 mm</u>
c. Minimum Foot	Room	<u>255 mm</u>

D.	Full Complement Weight of Bus of Fuel, Oil, Water At GVWR
	1. On Front Axle 3300 Kg. 7275 Lbs. 6200 Kg. 13670 Lbs.
	2. On Center Axle 3300 Kg. 7275 Lbs. 9500 Kg.20945 Lbs.
	3. On Rear Axle 6400 Kg.14110 Lbs. 10000 Kg.22045 Lbs.
	4. TOTAL 13000 Kg.28660 Lbs. 25300 Kg.55775 Lbs.
E.	Main Engine
	1. ManufacturerAG
	2. Type <u>Diesel. 6-cylinder</u> 3. Model <u>OM 407 h / OM 407 hA</u>
	4. Net S.A.E. Horsepower HP 240 / 280 (Turbo)
	at RPM 2200 / 2200
	5. Turbo Charge, Make & Type KKK, exhaust gas turbo charger
	6. Maximum Vehicle Speed 72/88 KPH 44,7/54,7 MPH
F.	Transmission W 3D 080/R; W4 A 080 R W 3 D 110/R; W4 A 110 R
	1. Manufacturer DB-AG
	2. Type <u>Automatic</u> 3. Model <u>4. Speeds <u>3 opt</u>ion 4</u>
	5. Retarder, Make, Type, and Size <u>DB-AG hydraulic integrated in</u> automatic transmission
G.	Axle, Front
	1. Manufacturer DB-AG
	2. Type <u>rigid</u> 3. Model V <u>D4/11DL</u> 74. GAWR <u>400</u> Kg. <u>882</u> Lbs.
н.	2. Type <u>rigid</u> 3. Model V <u>D4/11DL</u> 74. GAWR <u>400</u> Kg. <u>882</u> Lbs.
н.	2. Type <u>rigid</u> 3. Model V <u>D4/11DL</u> 74. GAWR <u>400</u> Kg. <u>882</u> Lbs. Axle, Center XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
н.	2. Type <u>rigid</u> 3. Model V <u>D4/11DL</u> 74. GAWR <u>400</u> Kg. <u>882</u> Lbs.
	2. Type <u>rigid</u> 3. Model <u>VD4/11DL</u> 74. GAWR <u>400</u> Kg. <u>882</u> Lbs. <u>Axle, Center XXXXXX</u> 1. Manufacturer <u>DB-AG</u>
	 Type <u>rigid</u> 3. Model <u>VD4/11DL</u>74. GAWR <u>400</u> Kg. <u>882</u> Lbs. <u>Axle, Center XXXXX</u> Manufacturer <u>DB-AG</u> Type <u>Tubular</u> 3. Model N<u>R7/4DL104</u>. GAWR <u>480</u> Kg. <u>1058</u> Lbs.

Air	К.	Suspension				
Drakes Dual circuit compressed-air 1. Make DB Type load sensitive brake at cen M. Interior Lighting 1. 1. Type Swing lights		Air X St	eel Spring _		Torsion Bar	
M. <u>Interior Lighting</u> Type <u></u>	L.			Dual	circuit compressed	
1. Type _Swing lights 2. Number of Fixtures	м			Type <u>1040</u>	Sensitive Diake at	axle
2. Number of Fixtures	L I +			ing lights		
1. Manufacturer Michelin, Dunlop, Goodyear, Continental etc 2. Size 11 R - 22,5 3. Type Radial 0. Air Conditioning not provided ex works 1. Make 2. Model 3. Capacity P. Kneeling Feature Available Yes Q. Wheelchair Lift Available Yes No						
2. Size <u>11 R - 22,5</u> 3. Type <u>Radial</u> O. <u>Air Conditioning not provided ex works</u> 1. Make <u>2. Model</u> <u>3. Capacity</u> P. Kneeling Feature Available Yes <u>No X</u> Q. Wheelchair Lift Available Yes <u>No X</u> R. Vehicle available as Electric Trolley Bus? Yes <u>X No</u> 1. Model <u>0 305 GI</u>	N.	Tires				
3. Type Radial 0. Air Conditioning not provided ex works 1. Make 2. Model 3. Capacity P. Kneeling Feature Available Yes No Q. Wheelchair Lift Available Yes No R. Vehicle available as Electric Trolley Bus? Yes X Nodel		1. Manufacturer	Michelin,	Dunlop, Go	odyear, Continenta:	l etc.
O. <u>Air Conditioning not provided ex works</u> Make2. Model3. Capacity Make2. Model3. Capacity Kneeling Feature Available YesNo Wheelchair Lift Available YesNo Wheelchair Lift Available YesNo R. Vehicle available as Electric Trolley Bus? Yes XNo Model 		2. Size	11 R - 22,	5		
1. Make 2. Model 3. Capacity P. Kneeling Feature Available Yes No X Q. Wheelchair Lift Available Yes No X R. Vehicle available as Electric Trolley Bus? Yes X No 1. Model		3. Type	Radial			
P. Kneeling Feature Available Yes <u>No X</u> Q. Wheelchair Lift Available Yes <u>No X</u> R. Vehicle available as Electric Trolley Bus? Yes <u>X</u> No <u>1. Model <u>0.305 GI</u></u>	0.	Air Conditioning	not provide	d e× works		
Q. Wheelchair Lift Available Yes <u>No X</u> R. Vehicle available as Electric Trolley Bus? Yes <u>X</u> No 1. Model <u>0.305_GT</u>		1. Make	2. Model		3. Capacity	
R. Vehicle available as Electric Trolley Bus? Yes <u>X</u> No 1. Model <u>0 305 GT</u>	Ρ.	Kneeling Feature	Available	Yes	No <u>X</u>	
1. Model <u>0 305 GT</u>	Q.	Wheelchair Lift A	vailable	Yes	No <u>x</u>	
	R.	Vehicle available	as Electric	Trolley	Bus? Yes <u>X</u> No	
2. Auxiliary Thermal Power Plant? Yes χ No KW150		1. Model <u>0 305 G</u>	<u> </u>			
		2. Auxiliary Ther	mal Power Pl	ant? Yes	<u>X</u> NO KW1	50

MANUFACTURERS PROFILE

Α.	FIRM	INBUS - INDUSTRIE AUTOBUS
В.	ADDRESS	MILANO - CORSO VENEZIA, 12
		·
С.	TELEPHONE	
D.	TELEX	E. CABLE
F.	OTHER MANU	JFACTURING SITES <u>DE SIMON Factory: OSOPPO (Udine) TIx.46086</u> 8
	SICCA Factor	y: Vittorio Veneto(TV) Tlx. 410541;BREDA Factory:Pistoia Tlx.570186
G.	NUMBER OF	YEARS EXPERIENCE PRODUCING BUSES
н.	BRIEF DESC	CRIPTION OF PRODUCT LINE
		CITY - INTERCITY BUSES
	INBUS U 210	(12 m200 HP)/INBUS S 210/INBUS I 210/INBUS U 150 (8.5 m. 150 HP)
I.	PRODUCTIVE	CAPACITY 1000 BUSES PER YEAR
J.	COMPLIANCE	E WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	YES	NO UNKNOWN _X
К.	COMPLIANCE	E WITH NOISE STANDARDS
	YES	NO UNKNOWN X
L.	COMPLIANCE	WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS
	YES	NO UNKNOWN X

M. VEHICLE TYPE

 Front end horizontal under floor axial engine with the second axle powered.

 Vertical front engine with second axle powered.

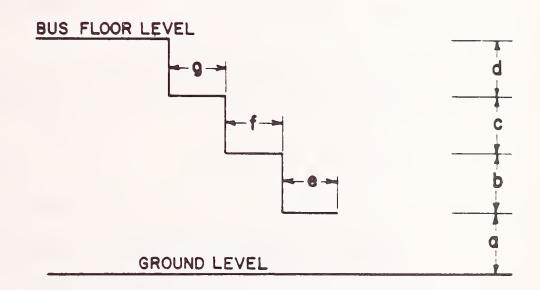
 Side mounted engine with second axle powered.

 *
 Rear engine with second axle powered.

 Rear engine with second axle powered.

 Engine immaterial, with hydrostatic or electric transmission.

APPENDIX C


TECHNICAL INFORMATION TO BE FURNISHED

Α.	Bus	Manufacturer INBUS		
Β.	Bus	Model Number AS 250		
С.	Dime	ensions		
	1.	Overall Length <u>17.44</u> M. Ft.		_In.
	2.	Overall Width 2.50 M. Ft.		_In.
	3.	a. Overall Height (maximum) <u>3.05</u> M.		_In.
		b. Height (main roof line) 3.05 M.		_In.
	4.	Angle of Approach	8	_Deg.
	5.	a. Breakover Angle Tractor	7	_Deg.
		b. Breakover Angle Trailer	7	_Deg.
	6.	Angle of Departure	7	_Deg.
	7.	Articulation Angles		
		a. Horizontal	47	Deg.
		b. Vertical	10	Deg.

8. Doorway Clear Opening (Including grab handles)

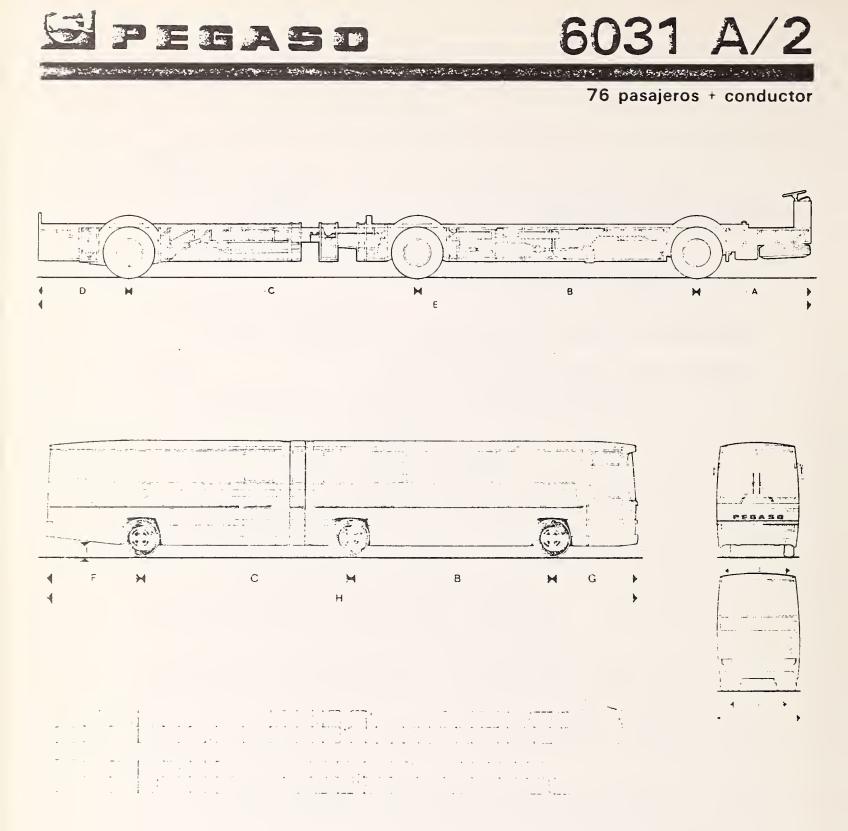
a.	Front	Width	.800	_M.	In.
		Height	2000	_М.	In.
Ъ.	Center (if provided)	Width	1.160.	_М.	In.
		Height	2000	_M.	In.
с.	Rear	Width	1,160	_M.	In.
		Height	2000	_М.	In.

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

		Fro	nt Door	Center	Door	<u>Rear</u> I	Door
a.	Empty Bus	<u>350 m</u>	min.	<u>350</u> mm.	in.	<u>350 mm</u> .	in.
	Kneeling bus	m	min.	mm .	in.	mm.	in.
b.		<u>200</u> mr	min.	<u>200</u> mm.	in.	<u>200</u> mm.	in.
с.		<u>200</u> m	min.	200 mm.	in.	<u>200</u> mm.	in.
d.		m	min.	mm .	in.	mm .	in.
e.		<u>300 m</u>	min.	<u>300 mm</u> .	in.	<u>300</u> mm.	in.
f.		<u>300</u> m	min.	<u>300</u> mm.	in.	<u>300</u> mm.	in.
g۰		m	min.	mm .	in.	mm .	in.

10.	Interior Head Room (center of aisle)							
	a. Front Axle Location <u>2100 mm</u> in.							
	b. Drive Axle Location <u>2100 mm</u> in.							
	c. Trailer Axle Location <u>1950</u> mmin.							
11.	Aisle Width							
	Between Transverse Seats (minimum) <u>450</u> mm.	in.						
12.	Floor Height Above Ground (at each door)							
	a. Front Door <u>750</u> mm.	in.						
	b. Center Door (if provided) 750 mm.	in.						
	c. Rear Door <u>750</u> mm.	in.						
13.	Horizontal Turning Envelope							
	a. Outside Body Turning Radius including bump.							
	<u>12 M.</u> Ft. In.							
	b. Inside Turning Radius							
	5.30 M. Ft. In.							
	c. Maximum Swing Out Radius of Right Rear curbside							
	corner of Trailer							
	MFtIn.							
14.	Wheel Bases							
	a. Tractor <u>5450 M.</u> Ft. In.							
	b. Trailer <u>6290</u> M. Ft. In.							
	c. Total <u>11740 M. Ft. In.</u>							
15.	Seats							
	a. Total Number of Seats							
	b. Minimum Knee to Hip Room 710 mm.							
	c. Minimum Foot Room							

D.	Full Complement Weight of Bus of Fuel, Oil, Water At GVWR						
	1. On Front Axle <u>4025 Kg</u> . Lbs. <u>6250 Kg</u> . Lbs.						
	2. On Center Axle <u>3855 Kg</u> . Lbs. <u>6750 Kg</u> . Lbs.						
	3. On Rear Axle <u>7645 Kg</u> . Lbs. <u>10930 Kg</u> . Lbs.						
	4. TOTAL <u>15525 Kg.</u> Lbs. 2 <u>3930 Kg.</u> Lbs.						
E.	Main Engine						
	1. Manufacturer FIAT (or MAN)						
	2. Type <u>6 cyl- 4 str Diesel</u> 3. Model						
	4. Net S.A.E. Horsepower <u>250 (or 280)</u> HP						
	at <u>2200</u> RPM						
	5. Turbo Charge, Make & Type <u>Turbo</u>						
	6. Maximum Vehicle Speed <u>85</u> KPH MPH						
F.	Transmission						
	1. Manufacturer VOITH						
	2. Type <u>automatic</u> 3. Model <u>Diwa</u> 4. Speeds <u>4</u>						
	5. Retarder, Make, Type, and Size Hydraulic retarder included						
G.	Axle, Front						
	1. Manufacturer SICCA						
	2. Type integral 3. Model shaped 4. GAWR 6500 Kg. Lbs.						
н.	Axle, Center Drive						
	1. Manufacturer SICCA						
	2. Type integral 3. Model Box shaped 4. GAWR 10000 Kg. Lbs.						
J.	Axle, Rear						
	1. Manufacturer MPM PADOVA						
	2. Type 3. Model 4. GAWR 12000 KgLbs.						


Κ.	Suspension
	Air X Steel Spring Torsion Bar X
L.	Brakes
	1. Make PERROT Type Front disc brake
М.	Interior Lighting Rear and trailer drumm brake
	1. Type Fluorescent
	2. Number of Fixtures 10
N.	Tires
	1. Manufacturer <u>MICHELIN - PIKELLI (or other)</u>
	2. Size <u>11-22.5</u>
•	3. Type <u>315/70 TUBELESS</u>
0.	Air Conditioning
	1. Make Optional 2. Model 3. Capacity
Ρ.	Kneeling Feature Available Yes <u>No X</u>
Q.	Wheelchair Lift Available Yes <u>X</u> No
R.	Vehicle available as Electric Trolley Bus? Yes <u>X</u> No
	1. Model
	2. Auxiliary Thermal Power Plant? Yes X No KW
	AR FICULA FED CIFY - SUBURBAN BUS

NO PHOTOGRAPHS WERE PROVIDED BY THE MANUFACTURER.

ENASA (PEGASO)

PEGASO

MANUFACTURER'S PROFILE DATA SHEETS WERE NOT RETURNED; ONLY THE FOLLOWING SPECIFICATION SHEET WAS PROVIDED.

Dimensione	s (mm)										
А	8	С	D	Ê	F	G	н	1	J	к	L
2320	5600	5815	1885	15620	2625	2460	16500	250	2002	1830	2450
Motor						Em	brague				
Marca						Tipo	delo) metro		8704-00 Hidragin Centrifue	co cen blaca	Re.
Modelo		9107				Ca	a de camt	bios			
Clindros Diametro		6 120 ii				Ma			WIESON 14 litros	-	des (RV-38)
Carrera Cilindrada Potencia ma Par maximo		79 mk	8 cm cv (147,1 4	(W) a 2000 Nm) a 125 (Pes Rel	o aciones		5	1.5	00 1 19 1 13 1
Relaci de co Canacidao E Consumo es Peso	411936 M	16 1 24 Pr 1055 3 920 K	75 gr 0. 1	a 1500 r.p	- m	PI	EG-2		2 1 M A	4 2	28 1 25 1 25 1

Eje delantero Modelo Tipo

Puente posterior

Tipo Capacidad de aceite Reduccion normal

Ruedas

Tipo Llanta Neumaticos

Dirección

Modelo Tipo Diametro del volante Relac desmultiplication Radio minimo de giro Capacidad de aceite

Frenos

Tipo

4499 23 Rigido en sección doble. T

4995.06 16 litros 4,69.1 (27 19x3,3)

DISCO 800×20 11.00 x 20

0522 03 HIDRAULICA-VIREX 550 mm 19-1 11-500 mm aprox 4 8 litros

Neumaticos de doble circuito.

Primer Eje	Puente	Semi- remolque
410	410	410
140	160	140
24 Nor	24 MGM	30'' MGM
1970	2250	1970

Superficie total

Superficie frenado (cm.)

Diametro tambor (mm)

Freno de estacionamiento Camaras MGM y valvula manual

Suspensión

Ancho zapata Camara freno

Anterior Posterior Ballestas amortiguadores, neumatica Ballestas amortiguadores, neumatica

Estructura

Tipo

Compresor

Caudal Depositos de aire Capacidad total

Instalación eléctrica

Tension Generador Baterias Motor de arranque

Cargas

	Eje	Puente	Eje Remolaue	Total
Autobastidor y ca- rroceria Pasaje + equipaje Pesos nominales	4 900 1600 6 500	5 600 4 400 10 000	3 900 2 600 6 500	14 400 8 600 23 000

24 V

6 cv

Autoportante

80 A (1500 W)

221 litros 1-12, 1-20 3-36 1-40 177 litros

2. de 12 V y 160 Anip h

Velocidades máximas y pendientes superables

Velocidad	Reduccion normal					
velocidad	Km	0,				
5 ' 4 ' 3 ' 2 ' 1 '	85 53 35 20 1.2	1 2 2.8 5.2 10.3 18.7				

Dotación de serie

Deposito de combustible de 175 litros Rueda de repuesto

Tablero de instrumentos. Velocimetro y cuentakilometros. Cuenta revoluciones. Manometro de aire. Aparato combinado

Nota importante: Estas especificaciones tienen mero caracter orientativo y pueden ser modificadas sin previo aviso

Abril 1981

CONCESIONARIO:

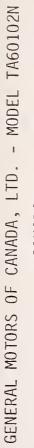
PEG-3

GENERAL MOTORS OF CANADA LTD. DIESEL DIVSION

MANUFACTURERS PROFILE

Α.		iesel Division, eneral Motors of Canada Limited	
Β.	ADDRESS	Box 5160	
		London, Ontario N6A 4N5	
		Canada	
С.	TELEPHONE	519-452-5153	
D.	TELEX	064-7231 E. CABLE	
F.	OTHER MAN	JFACTURING SITES St. Eustache, Quebec, Canada	
G.	NUMBER OF	YEARS EXPERIENCE PRODUCING BUSES 20	
н.	BRIEF DES	CRIPTION OF PRODUCT LINE <u>Transit coaches</u>	
I.	PRODUCTIV	CAPACITY 225 BUSES PER YEAR	
J.	COMPLIANC	WITH U.S. OR CALIFORNIA EMISSION STANDARDS	
	YES X	NO UNKNOWN	
К.	COMPLIANC	E WITH NOISE STANDARDS	
	YES X	NO UNKNOWN	
L.	COMPLIANC	E WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS	
	YES X	NO UNKNOWN	

Μ. VEHICLE TYPE

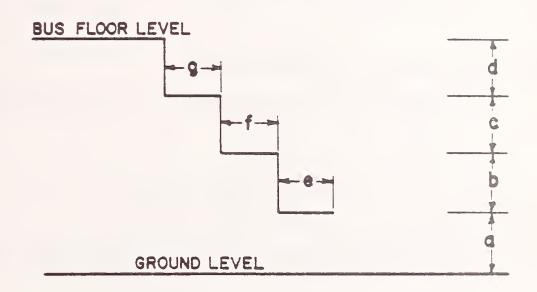

Front end horizontal under floor axial engine with the second axle powered. Vertical front engine with second axle powered. Side mounted engine with second axle powered XX Rear engine with third axle powered. Rear engine with second axle powered. Engine immaterial, with hydrostatic or electric transmission.

APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED

Α.	Bus	Diesel Division, Manufacturer <u>General Motors of Canada Limit</u>	ed
в.	Bus	Model Number <u>TA60102N</u>	
С.	Dimensions		
	1.	Overall Length <u>18,288</u> M. <u>60</u> Ft.	In.
	2.	Overall Width 2,590 M. Ft.	<u>102</u> In.
	3.	a. Overall Height (maximum) <u>3029</u> M.	<u>119.25</u> In.
		b. Height (main roof line) M.	<u>116.5</u> In.
	4.	Angle of Approach	.0 ⁰ 46' Deg.
	5.	a. Breakover Angle Tractor	Deg.
		b. Breakover Angle Trailer	Deg.
	6.	Angle of Departure	8 ⁰ 16' Deg.
	7.	Articulation Angles	
		a. Horizontal	<u> 10 </u> Deg.
		b. Vertical	<u> 10 </u> Deg.

GMDD- (2)



CANADA

a.	Front	Width	1074	_M.	42.3	In.
		Height	2029	_M.	79-7/8	_In.
Ъ.	Center (if provided)	Width	1145	_M.	45.1	In.
		Height	1955	_M.	77	In.
с.	Rear	Width	1145	_М.	45.1	In.
		Height	1955	_M.	77	In.

		Front	Door	Center	Dcor.	Rear	Door
a.	Empty Bus	<u>343</u> mm.	<u>13.5</u> in.	<u>350</u> mm.	<u>13.8</u> in.	<u>376</u> mm.	<u>14.8</u> in.
	Kneeling bus	<u>244</u> mm.	<u>9.6</u> in.	mm.	<u> </u>	<u> </u>	<u></u> in.
Ъ.		<u>254</u> mm.	<u>10</u> in.	<u>243</u> mm.	<u>9.6</u> in.	2 <u>66.7</u> mm.	<u>10.5</u> in.
с.		<u>254</u> mm.	<u>10</u> in.	<u>243</u> mm.	<u>9.6</u> in.	266.7mm.	<u>10.5</u> in.
d.		NA mm.	in.	NA mm.	in.	NA mm.	in.
e.	3	0 <u>4.8</u> mm.	<u>12</u> in.	<u>304.</u> 8mm.	<u>12</u> in 3	0 <u>4.8</u> mm.	<u>12</u> in.
Í.	3	0 <u>4.8</u> mm.	<u>12</u> in.3	3 <u>04.8</u> mm.	<u>12</u> in.3	04.8 mm.	<u>12</u> in.
ы. С		NA mm.	in.	NA mm.	in.	NA mm.	in.

10.	Interior Head Room (center of aisle)
	a. Front Axle Location <u>1994 mm</u> . <u>78.5</u> in.
	b. Drive Axle Location <u>1943</u> mm. <u>76.5</u> in.
	c. Trailer Axle Location <u>1994</u> mm. <u>78.5</u> in.
11.	Aisle Width
	Between Transverse Seats (minimum) <u>660.4 mm. 26 in.</u>
12.	Floor Height Above Ground (at each door)
	a. Front Door <u>850</u> mm. <u>33.5</u> in.
	b. Center Door (if provided) <u>863 mm. 34 in.</u>
	c. Rear Door <u>889</u> mm. <u>35</u> in.
13.	Horizontal Turning Envelope
	a. Outside Body Turning Radius including bumper
	<u>1328 M. 43.5 Ft. 523</u> In.
	b. Inside Turning Radius
	<u>6502.4 M. 21.3 Ft. 256 In.</u>
	c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer
	NIL M. NIL Ft. NIL In. (No swing out due to
14.	Wheel Bases pusher style rear engine
	a. Tractor <u>5969 M. 19.58 Ft. 235</u> In.
	b. Trailer <u>7156</u> M. <u>23.47</u> Ft. <u>281.73</u> In.
	c. Total <u>13124 M. 43.05</u> Ft. <u>516.73</u> In.
15.	Seats
	a. Total Number of Seats76
	b. Minimum Knee to Hip Room27"
	c. Minimum Foot Room

Đ.	Full Complement Weight of Bus of Fuel, Oil, Water At GVWR
	1. On Front Axle 3020 Kg. 6660 Lbs. 3760 Kg. 8290 Lbs.
	2. On Center Axle 4282 Kg. 9440 Lbs. 1006 Kg.22180 Lbs.
	3. On Rear Axle 7784 Kg. 17160 Lbs. 9186 Kg.20252 Lbs.
	4. TOTAL 15086 Kg. 33260 Lbs. 23132 Kg.50995 Lbs.
E.	Main Engine
	1. Manufacturer <u>G.M. Detroit Diesel Allison</u>
	2. Type Diesel 3. Model 8V-71N
	4. Net S.A.E. Horsepower 255 HP
	at <u>2000</u> RPM
	5. Turbo Charge, Make & Type
	6. Maximum Vehicle Speed <u>90</u> KPH <u>55</u> MPH
F.	Transmission
	1. Manufacturer Detroit Diesel Allison
	2. Type 3. Model <u>V735</u> 4. Speeds <u>3F/1R</u>
	5. Retarder, Make, Type, and Size <u>Telma Eddy-Current Focal</u> 155
G.	Axle, Front
	1. Manufacturer Rockwell
	2. Type Elliott 3. Model 4. GAWR 4990 Kg.11,000Lbs.
Н.	Axle, Center Drive
	1. Manufacturer Rockwell
	2. Type Floating 3. Model 4. GAWR 10433 Kg. 23,000 Lbs.
J.	Axle, Rear
	1. Manufactu:er Rockwell
	Full 2. Type Floating 3. Model 4. GAWR 10433 Kg. 23,000Lbs.

GMDD- (5)

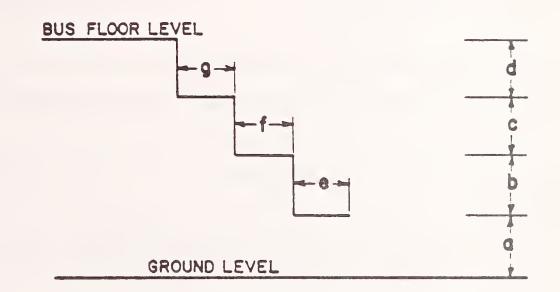
.

К.	Suspension					
	Air <u>xx</u> Steel Spring <u>Torsion Bar</u>					
L.	Brakes					
	1. Make <u>Bendix-Westinghouse</u> Type <u>Air</u>					
Μ.	Interior Lighting					
	1. Type Fluorescent - centre strip					
	2. Number of Fixtures 7					
ЪŤ	Times					
Ν.	Tires					
	1. Manufacturer Customer choice					
	2. Size 12.00 x 22.5					
	3. Type Tube or tubeless					
0						
0.	Air Conditioning					
	1. Make 2. Model 3. Capacity					
Ρ.	Kneeling Feature Available Yes x No					
Q.	Wheelchair Lift Available Yes X No					
R.	Vehicle available as Electric Trolley Bus? Yes No X					
	1. Model					
	2. Auxiliary Thermal Power Planc? Yes No X KW					

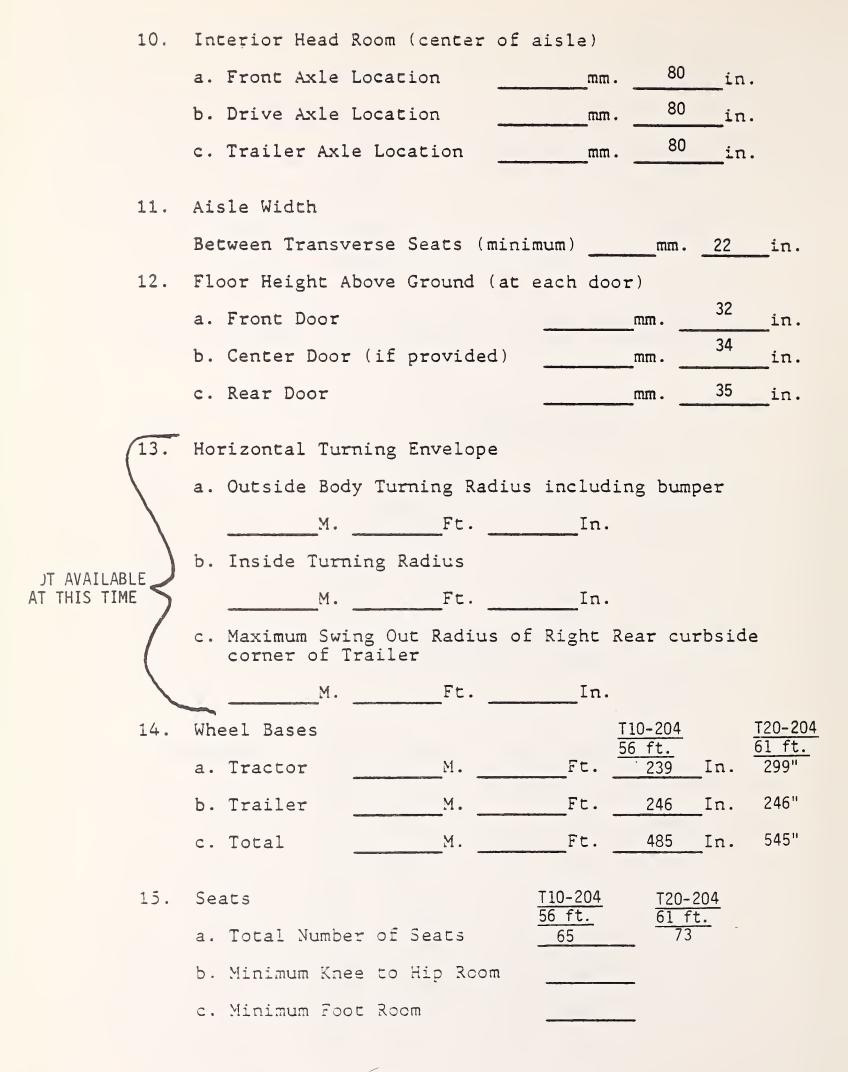
А.	FIRM	GMC TRUCK & COACH DIVISION GENERAL MOTORS CORPORATION
В.	ADDRESS	660 SOUTH BOULEVARD EAST
	-	PONTIAC, MICHIGAN 48053
с.	- TELEPHONE	(313) 857-4005
D.	TELEX TWX-	810-232-5217 E. CABLE
F.	OTHER MANU	JFACTURING SITES NONE
G.	NUMBER OF	YEARS EXPERIENCE PRODUCING BUSES 56
н.	BRIEF DESC	CRIPTION OF PRODUCT LINE ADVANCED DESIGN SPECIFICATION
	35 AND	40 FOOT TRANSIT COACHES, AND ARTICULATED COACHES.
I.	PRODUCTIVE	E CAPACITY APPROX. 5,000 BUSES PER YEAR
J.	COMPLIANCE	E WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	YES X	NO UNKNOWN
К.	COMPLIANCE	E WITH NOISE STANDARDS
	YES X	NO UNKNOWN
L.	COMPLIANC	E WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS
	YES X	NO UNKNOWN

Front end horizontal under ;loor axial engine with the second axle powered.	
Vertical front engine with second axle powered.	
Side mounted engine with second axle powered.	
Rear engine with third axle powered.	
<u>Rear engine with third axle powered</u> Rear engine with second axle powered.	

APPENDIX C


TECHNICAL INFORMATION TO BE FURNISHED.

Α.	Bus	Manufacturer	GMC TRUCK & COA	CH				
Β.	Bus	Model Number	R10-204 (56 FT.)	R20-	-204 (61 F	T.)		
С.	Dime	ensions						
	1.	Overall Leng	;th	Μ.	-61- -56-	_Ft.		_In.
	2.	Overall Widt	h	Μ.		_Ft.	102	_In.
	3.	a. Overall H	leight (maximum)			_ M .	123	_In.
		b. Height (m	ain roof line)		- <u></u>	M.	119	_In.
	4.	Angle of App	roach				10	_Deg.
	5.	a. Breakover	Angle Tractor				10	_Deg.
		b. Breakover	Angle Trailer				13-	_Deg.
	6.	Angle of Dep	arture				9	_Deg.
	7.	Articulation	Angles					
		a. Horizonta	1				<u>+</u> 47	_Deg.
		b. Vertical					+ 16	Deg.


a.	Front	Width	a	M	28	_In.
		Height		<u>M</u> .	71	_In.
Ъ.	Center (if provided)	Width		_м.	46	_In.
		Height		M.	70	_In.
с.	Rear	Width		M	46	_In.
		Height		M .	70	_In.

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

.

		Front	Doo	r	Center	Door.	Rear I	Door	
a.	Empty Bus	m.	<u>13</u>	_in.	m.	<u>15</u> in.	m.	16	_in.
	Kneeling bus	m.	_8	_in.	m.	<u> </u>	m.	-	_in.
Ъ.		m.	10	_in.	m.	<u>10</u> in.	m.	10	_in.
c.		m.	10	_in.	m.	<u>10</u> in.	m.	10	_in.
d.		m.	0	_in.	m.	<u> </u>	<u> </u>	0	_in.
e.		m.	11	_in.	m.	<u> 11 </u> in.	m.	11	_in.
4.		m.	11	_in.		<u>11</u> in.			_in.
g.		mm .	0	_in.		0 in.	m.	0	in.

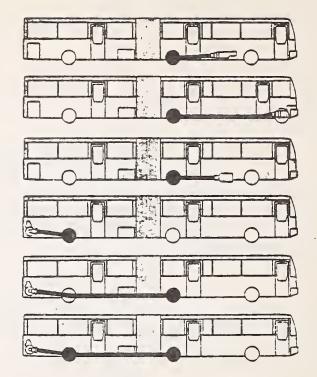
D.	Full Complement Weight of Bus of Fuel, Oil, Water At GVWR	
	1. On Front Axle Kg. Lbs. Kg. Lbs.	
тот	2. On Center Axle Kg. Lbs. Kg. Lbs.	
AVAILABLE S	3. On Rear Axle Kg. Lbs. Kg. Lbs.	
E	4. TOTAL Kg. Lbs. Kg. Lbs.	
E.	Main Engine	
	1. Manufacturer DETROIT DIESEL ALLISON DIV. GM (DDAD)	
	2. Type SIX CYL. V. 3. Model 6V92TA	-
	4. Net S.A.E. Horsepower 294 HP STD 315 HP OPT.	-
	at 2100 RPM	
	5. Turbo Charge, Make & Type FURNISHED DDAD	
	6. Maximum Vehicle Speed KPH 52.8 MPH	
F.	Transmission	
	1. Manufacturer DDAD	
	2. Type V-DRIVE 3. Model V735D 4. Speeds 3	
	5. Retarder, Make, Type, and Size	
C	Arlo Front	
9.	Axle, Front 1. Manufacturer GMC, INDEPENDENT FRONT SUSPENSION	
	2. Type 3. Model 4. GAWRKg. 13,400 Lbs	•
Н.	Axle, Center Drive	
	1. Manufacturer ROCKWELL (WITHOUT CARRIER)	
	2. Type 3. Model 59733 RDL 4. GAWRKg. 23,500 Lbs	,
-	Avia Room DRIVE	
. ل	Axle, Rear DRIVE	
	1. Manufacturer ROCKWELL	-
	2. Type 3. Model 59733 RDC 4. GAWRKg. 23,500 Lbs	1

Κ.	Suspension	
	Air X Steel Sprin	ng Torsion Bar
L.	Brakes	
	1. Make ROCKWELL	Type WEDGE
М.	Interior Lighting	
	1. Type	FRONT LIGHTED ADVERTISING SIGNS
	2. Number of Fixtures	NOT DEFINED
Ν.	Tires	VADIOUS
	1. Manufacturer	VARIOUS
	2. Size	12.5 x 22.5 G RANGE
	3. Type	CITY - SUBURBAN
0	Air Conditioning	
0.	Air Conditioning	
	1. Make <u>GMC</u> 2. Mo	odel 3. Capacity 13 TON NOMINA
Ρ.	Kneeling Feature Available	e Yes <u>x</u> No
Q.	Wheelchair Lift Available	Yes <u>x</u> No
R.	Vehicle available as Elect	tric Trolley Bus? Yes <u>No X</u>
	1. Model <u>N/A</u>	
	2. Auxiliary Thermal Power	r Plant? Yes No X KW

GRAEF and STIFT A.G.

Α.	FIRM ÖAF - Gräf & Stift AG	
Β.	ADDRESS <u>Brünnerstraße 72</u> A-1211 Vienna	
	Austria /Europe .	
С.	TELEPHONE 86 96 11	
D.	TELEX 133329 aflie a E. CABLE	
г.	OTHER MANUFACTURING SITES Carlbergergasse 40-42	
	A-1230 Vienna (bus production)	
G.	NUMBER OF YEARS EXPERIENCE PRODUCING BUSES	
Н.	BRIEF DESCRIPTION OF PRODUCT LINE city and intercity buses -	
	two axled, articulated, double deck versions, trolley,	
	diesel and Lpg buses; special buses like airfield buses,X-ray b	
I.	PRODUCTIVE CAPACITY 250 BUSES PER YEAR	
J.	COMPLIANCE WITH U.S. OR CALIFORNIA EMISSION STANDARDS	
	YES × NO UNKNOWN	
К.	COMPLIANCE WITH NOISE STANDARDS	
	YES X NO UNKNOWN	
L.	COMPLIANCE WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS	
	YES NO UNKNOWN x	

X Front end horizontal under floor axial engine with the second axle powered.

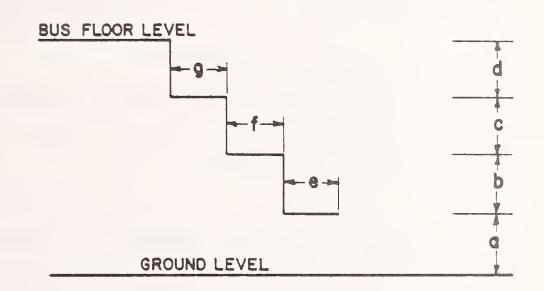

Vertical front engine with second axle powered.

Side mounted engine with second axle powered.

Rear engine with third axle powered.

Rear engine with second axle powered.

Engine immaterial, with hydrostatic or electric transmission.

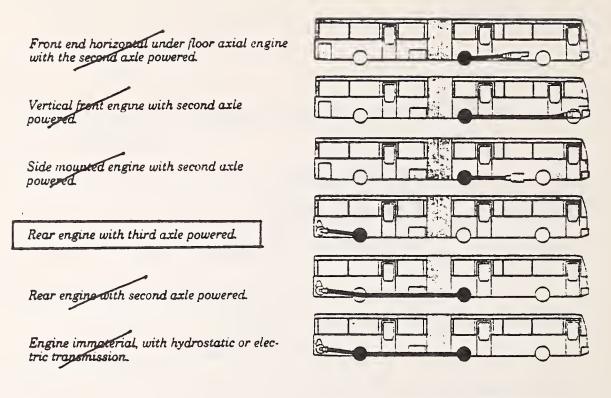

APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED

Α.	Bus	Manufacturer ÖAF Gräf & Stift AG						
в.	Bus	Model Number <u>GS GU 280 M</u> 18						
С.	Dime	msions						
	1.	Overall Length <u>18,0</u> M. Ft	•	_In.				
	2.	Overall Width 2,48 M. Ft	•	_In.				
	3.	a. Overall Height (maximum) 3,01 M	1.	_In.				
		b. Height (main roof line) 2,94 M	1	_In.				
	4.	Angle of Approach	9	_Deg.				
	5.	a. Breakover Angle Tractor13 Deg						
		b. Breakover Angle Trailer	11	_Deg.				
	6.	Angle of Departure	8	_Deg.				
	7.	Articulation Angles						
		a. Horizontal	<u>+</u> 47	_Deg.				
		b. Vertical	<u>+</u> 8	_Deg.				

a.	Front	Width	1,25	_M.	In.
		Height	2,03	_M.	In.
b.	Center (if provided)	Width	1,25	_M.	In.
		Height	2,03	_M.	In.
с.	Rear (two rear doors	Width	1,25	Μ.	In.
	provided)	Height	2,03	Μ.	In.

		Front	Door	Center	Door.	Rear	Door
a.	Empty Bus	340 mm.	in.	340 mm.	in.	<u>340</u> mm.	in.
	Kneeling bus	<u>340</u> mm.	in.	<u>340</u> mm.	in.	<u>340</u> mm.	in.
Ъ.		<u>170</u> mm.	in.	<u>170</u> mm.	in.	170 mm.	in.
с.		<u>170</u> mm.	in.	<u>170</u> mm.	in.	<u>170</u> mm.	in.
d.		180 mm.	in.	<u>180</u> mm.	in.	<u>180</u> mm.	in.
e.		300 mm.	in.	<u>300 mm</u> .	in.	<u>300 mm</u> .	in.
f.		300 mm.	in.	<u>250</u> mm.	in.	<u>250</u> mm.	in.
g.	approx	.500 mm.	in.	250 mm.	in.	250 mm.	in.


10.	Interior Head Room (center of aisle)
	a. Front Axle Location 2045 mmin.
	b. Drive Axle Location 2045 mm. in.
	c. Trailer Axle Location 2045 mm. in.
11.	Aisle Width
	Between Transverse Seats (minimum) 910 mmin.
12.	Floor Height Above Ground (at each door)
	a. Front Door <u>860</u> mmin.
	b. Center Door (if provided) <u>860 mm</u> . in.
	c. Rear Door <u>860</u> mmin.
13.	Horizontal Turning Envelope
	a. Outside Body Turning Radius including bumper
	11,0 M. Ft. In.
	b. Inside Turning Radius
	<u>4,5 M.</u> Ft. In.
	c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer
	<u>1,2</u> M. <u>Ft.</u> In.
14.	Wheel Bases
	a. Tractor <u>5,6</u> M. Ft. In.
	b. Trailer 7,05 M. Ft. In.
	c. Total <u>12,65</u> M. Ft. In.
15.	Seats
	a. Total Number of Seats 36 seats/123 standing passenger:
	b. Minimum Knee to Hip Room 700 mm
	c. Minimum Foot Room 400 mm

D.	Full ComplementWeight of Busof Fuel, Oil, WaterAt GVWR
	1. On Front Axle 4600 KgLbs. 7500 KgLbs.
	2. On Center Axle 5900 KgLbs. 10000 KgLbs.
	3. On Rear Axle 3400 Kg. Lbs. 7500 Kg. Lbs.
	4. TOTAL 13900 Kg. Lbs. 25000 Kg. Lbs.
E.	Main Engine
	1. Manufacturer M.A.N.
	2. Type <u>Diesel</u> 3. Model <u>D 2566 MTUM</u>
	4. Net SXXXE. Horsepower 280 HP
	at <u>2200</u> RPM
	5. Turbo Charge, Make & TypeM.A.N.
	6. Maximum Vehicle Speed 70 KPHMPH
F.	Transmission
	1. Manufacturer <u>Voith</u>
	2. Type <u>DIWA(automatic)</u> 3. Model <u>D 851</u> 4. Speeds <u>3</u>
	5. Retarder, Make, Type, and Size hydraulic retarder, Voith
G.	Axle, Front
	1. Manufacturer M.A.N.
	2. Type 3. Model 4. GAWR 7500 Kg. Lbs.
Н.	Axle, Center Drive
	1. Manufacturer ÖAF Gräf & Stift
	2. Type countershaft gear axle 4. GAWR 13000 Kg. Lbs.
J.	Axle, Rear
	1. Manufacturer MAN independent suspension 2. Type 3. Model <u>v7-70</u> 4. GAWR 7500 Kg. Lbs.

Κ.	Suspension	
	Air Steel Spri	ng Torsion Bar
L.	Brakes	Tues
		Type <u>air operated</u>
Μ.	Interior Lighting	
	1. Type	Fluorescent
	2. Number of Fixtures	7
Ν.	Tires	
	1. Manufacturer Sempe	rit
	2. Size <u>11R</u>	22,5/12R22,5
	3. Typesteel	belted radial
0.	Air Conditioning	
	1. Make 2. M	odel 3. Capacity
_		
Ρ.	Kneeling Feature Availabl	e Yes <u>No x</u>
Q.	Wheelchair Lift Available	Yes <u>x</u> No
R.	Vehicle available as Elec	tric Trolley Bus? Yes <u>x</u> No
	1. Model see attached 1	iterature
	2. Auxiliary Thermal Powe	r Plant? Yes <u>x</u> No <u>KW 40</u>

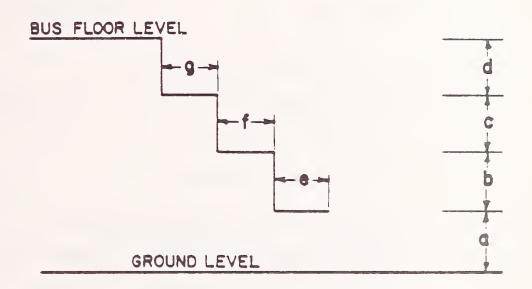
S.A. HEULIEZ BUS

Α.	FIRM	S.A. H	EULIEZ BUS
В.	ADDRESS	7 rue	Louis Heuliez
	_	79140	CERIZAY - FRANCE
	_		
с.	TELEPHONE	(49) 80	11.11 - 80.12.22
D.	TELEX		E. CABLE
F.	OTHER MANUE	ACTURING	SITES
	RORTHAIS	- CERIZAY	- BOURG-EN-BRESSE - BROU
G.	NUMBER OF Y	EARS EXP	ERIENCE PRODUCING BUSES <u>35 years</u>
н.	BRIEF DESCH	RIPTION C	F PRODUCT LINE MINIBUS - MEDIUMBUS -
	STANDARD an	d ARTICULA	ED BUSES - COACHES
I.	PRODUCTIVE	CAPACITY	BUSES PER YEAR
J.	COMPLIANCE	WITH U.S	. OR CALIFORNIA EMISSION STANDARDS
	YES	NO	UNKNOWN X
К.	COMPLIANCE	WITH NOI	SE STANDARDS
	YES	NO	UNKNOWN X
L.	COMPLIANCE	WITH FED	ERAL MOTOR VEHICLE SAFETY STANDARDS

APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED

Α.	Bus	ManufacturerHEULLEZ_BUS		u a
Β.	Bus	Model Number 0 305 G		
C.	Dime	nsions		
	1.	Overall Length 17,335 M. Ft.		_In.
	2.	Overall Width 2,5 M. Ft.		_In.
	3.	a. Overall Height (maximum)984M.		_In.
		b. Height (main roof line) 2,155 M.		_In.
	4.	Angle of Approach	8	_Deg.
	5.	a. Breakover Angle Tractor		_Deg.
		b. Breakover Angle Trailer	46	_Deg.
	5.	Angle of Departure		_Deg.
	7.	Articulation Angles		
		a. Horizontal	<u>+</u> 45	_Deg.
		b. Vertical	<u>+</u> 10	_Deg.


S.A. LOUIS HEULIEZ - MODEL O 305 G FRANCE

a.	Front	Width <u>1,29</u> M. In	1.
		HeightMIn	1.
b.	Center (if provided)	Width <u>1,29</u> MIn	1.
		HeightMIn	1.
с.	Rear	Width <u>1,29</u> MIn	1.
		Height 2,02 MIn	1.

		Front	Door	Center	Door	Rear I	Door
a.	Empty Bus	<u>339</u> mm.	in.	<u>339</u> mm.	in.	<u>339</u> mm.	in.
	Kneeling bus	<u>339</u> mm.	in.	<u>339</u> mm.	in.	<u>339</u> mm.	in.
Ъ.		<u>195</u> mm.	in.	<u>205</u> mm.	in.	<u>205</u> mm.	in.
с.		<u>195</u> mm.	in.	<u>185</u> mm.	in.	<u>185</u> mm.	in.
d.		m.	in.		in.	mm .	in.
e.		<u>40</u> mm.	in.	<u> 30 </u> mm .	in.	<u> 30 </u> mm .	in.
÷.		<u>38</u> mm.	in.	<u>34</u> mm.	in.	<u>34</u> mm.	in.
3		m.	in.	m.	in.	mm .	in.

10.	Interior Head Room (center of aisle)
	a. Front Axle Location <u>214 mm</u> in.
	b. Drive Axle Location <u>210 mm</u> in.
	c. Trailer Axle Location <u>198</u> mm. in.
11.	Aisle Width
	Between Transverse Seats (minimum) 540 mm. in.
12.	Floor Height Above Ground (at each door)
	a. Front Door <u>729</u> mm. in.
	b. Center Door (if provided)mmin.
	c. Rear Door <u>729</u> mm. in.
13.	Horizontal Turning Envelope
	a. Outside Body Turning Radius including bumper
	<u>11.25 M.</u> Ft. In.
	b. Inside Turning Radius
	4,70 M. Ft. In.
	c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer
	<u> 8 M. </u>
14.	Wheel Bases
	a. Tractor <u>5,6 M</u> . <u>Ft</u> . <u>In</u> .
	b. Trailer <u>6,15</u> M. <u>Ft.</u> In.
	c. Total <u>11,75 M</u> . Ft. In.
15.	Seats
	a. Total Number of Seats
	b. Minimum Knee to Hip Room <u>700 mm</u>
	c. Minimum Foot Room0,125 m2

D.	Full Complement Weight of Bus of Fuel, Oil, Water At GVWR
	1. On Front Axle Kg. Lbs. Kg. Lbs.
	2. On Center Axle Kg. Lbs. Kg. Lbs.
	3. On Rear Axle Kg. Lbs. Kg. Lbs.
	4. TOTAL 12 900 Kg. Lbs. 25 300 Kg. Lbs.
Ε.	Main Engine
	1. Manufacturer MERCEDES - DAIMLER-BENZ
	2. Type <u>OM 407 H</u> 3. Model <u>DIESEL</u>
	4. Net S.A.E. Horsepower 240 HP
	at <u>2200</u> RPM
	5. Turbo Charge, Make & Type
	6. Maximum Vehicle Speed <u>71</u> KPHMPH
F.	Transmission
<u> </u>	
	2. Type 3. Model <u>W 3 D 080 R</u> 4. Speeds <u>3</u>
	5. Retarder, Make, Type, and Size <u>DAIMIFR-BENZ</u>
	J. Recalder, Make, Type, and Size <u>DAIMIER-BEN/</u>
G.	Axle, Front
	1. Manufacturer DAIMIFR-BENZ
	2. Type V04/11DL 3. Model 4. GAWR 6200 KgLbs.
H.	Axle, Center Drive
	1. Manufacturer <u>DAIMLER-BENZ</u>
	2. Type NR7/4DL 103. Model 4. GAWR _9500 KgLbs.
	2. Type <u>MR//4DL 1</u> 0.3. Hodel 4. Grant <u>9500</u> (5203.
J.	Axle, Rear
	1. Manufacturer DAIMLER-BENZ
	2. Type <u>H07/8DL 1</u> 03. Model 4. GAWR <u>10500 Kg</u> Lbs.

Κ	Suspension
	Air Steel Spring Torsion Bar
L.	Brakes
	1. Make <u>DAIMLER-BENZ</u> Type <u>DI 2 Kreis</u>
Μ.	Interior Lighting
	1. Type <u>Fluorescent</u>
	2. Number of Fixtures7
Ν.	Tires
	1. Manufacturer
	2. Size Front: 11 00 R 22.5 Rear: 11 00 R 22,5
	3. Type
0.	Air Conditioning
	1. Make 2. Model 3. Capacity
2	
Υ.	Kneeling Feature Available Yes No X
Q.	Wheelchair Lift Available Yes No X
R.	Vehicle available as Electric Trolley Bus? Yes X No
	1. Model
	2. Auxiliary Thermal Power Plant? Yes <u>x</u> No <u>KW</u>

Α.	FIRM LEX VEHICLE ENGINEERING LTD
В.	ADDRESS RINGWOOD ROAD, TOTTON, SOUTHAMPTON, HANTS SO4 3EA
с.	TELEPHONE 0703 862137
D.	TELEX 477756 LEXTIL G E. CABLE
F.	OTHER MANUFACTURING SITES None
G.	NUMBER OF YEARS EXPERIENCE PRODUCING BUSES 25 years
н.	BRIEF DESCRIPTION OF PRODUCT LINE Three ranges - MAXETA - Bus Range,
	HAMPSHIRE - Specialist Vehicle Bodies, TRANSTECH - Special Containers and
	Cabins
I.	PRODUCTIVE CAPACITY 130 BUSES PER YEAR
J.	COMPLIANCE WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	YES NO UNKNOWN X
К.	COMPLIANCE WITH NOISE STANDARDS
	YES NO UNKNOWN X
L.	COMPLIANCE WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS
	YES NO UNKNOWN X

 Front end horizontal under floor axial engine

 with the second axle powered.

 Vertical front engine with second axle

 powered.

 Side mounted engine with second axle

 powered.

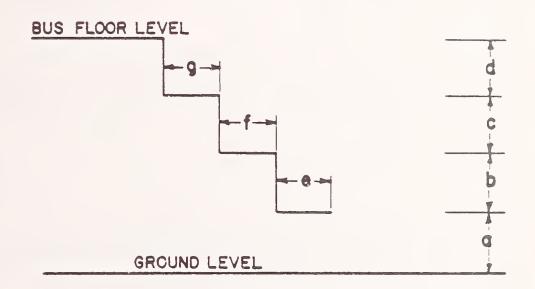
 Rear engine with third axle powered.

 Rear engine with second axle powered.

 Engine immaterial, with hydrostatic or electric transmission.

APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED


Α.	Bus M	lanufacturer Mercedes Benz or DA	\F			
в.	Bus M	Bus Model Number 0305G				
С.	Dimensions					
	1.	Overall Length 17.335 M	· _ 56*	Ft.	102	_In.
	2.	Overall Width 2.500 M	8*	Ft.	21/2	_In.
	3.	a. Overall Height (maximum)	3.048	М.	120"	_In.
		b. Height (main roof line)	-2-172	Μ.	85 ¹ /2	_In.
	4.	Angle of Approach			75	_Deg.
	5.	a. Breakover Angle Tractor				_Deg.
		b. Breakover Angle Trailer			-	Deg.
	6.	Angle of Departure			8½	_Deg.
	7.	Articulation Angles				
		a. Horizontal			47.2	_Deg.
		b. Vertical				Deg.

LEX-(2)

,

a.	Front	Width	1200	M .	47.2	_In.
		Height	2030	_M .	80	_In.
b.	Center (if provided)	Width	1200	_М.	47.2	_In.
		Height	2030	M .	80	_In.
с.	Rear	Width	1200	_М.	47.2	_In.
		Height	2030	_M.	80	_In.

		Front Door	Center Door	Rear Door
a.	Empty Bus	339 mm. 13.3 in.	339 mm. 13.3 in.	<u>339 mm. 13.3 in.</u>
	Kneeling bus	mmin.	mmin.	inin.
b.		<u>195 mm. 7.7 in</u>	195 mm. 7.7 in.	<u>195</u> mm. <u>7.7</u> in.
с.		<u>195</u> mmin.	inin.	inin.
d.		mmin	inin.	inin.
e.		<u>420 mm. 16.5 in</u>	<u>340 mm. 13.4 in.</u>	<u>340 mm.13.4</u> in.
£.		<u>420 mm. 16.5 in</u>	<u>340 mm. 13.4 in.</u>	<u>340 mm.13.4</u> in.
ы.		mmin	inin.	nmin.

10. Interior Head Room (center of aisle) a. Front Axle Location 2172 mm. 85.5 in. Sentre b. Drive Axle Location 2147 mm. 84.5 in. Drive c. Trailer Axle Location 80 2032 in. mm. 11. Aisle Width Between Transverse Seats (minimum) 600 mm. 23.6 in. 12. Floor Height Above Ground (at each door) 729 28.7 a. Front Door mm. in. 729 28.7 b. Center Door (if provided) mm. in. mm. 28.7 c. Rear Door 729 in. Horizontal Turning Envelope 13. a. Outside Body Turning Radius including bumper 22.5 M. 73 Ft. 10 In. b. Inside Turning Radius M. Ft. In. c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer M. Ft. In. 14. Wheel Bases Ft. 4.5 18 a. Tractor 5.6 Μ. In. 2 20 6.15 Μ. Ft. b. Trailer In. Ft. 6.5 3.8 11-75 Μ. c. Total In. 15. Seats a. Total Number of Seats 67 b. Minimum Knee to Hip Room 24 in. 9 in. c. Minimum Foot Room

	Full Complement					
D.	Weight of Bus of Fuel, Oil, Water At GVWR					
	1. On Front Axle Kg. Lbs. <u>6305</u> Kg. <u>13888</u> Lbs.					
	2. On Center Axle Kg. Lbs. <u>9661</u> Kg. <u>21280</u> Lbs.					
	3. On Rear Axle Kg. Lbs. 10170 Kg. 22400 Lbs.					
	4. TOTALKgLbs. 25729 Kg. 56672 Lbs.					
E.	Main Engine					
	1. Manufacturer Mercedes Benz					
	2. Type <u>6 cyl. in line Diesel</u> 3. Model <u>OM 407 H</u>					
	4. Net S.A.E. Horsepower 240 HP					
	at 2200 RPM					
	5. Turbo Charge, Make & Type					
	6. Maximum Vehicle Speed 70 KPH 44 MPH					
F.	Transmission					
	1. Manufacturer Mercedes Benz					
	2. Type Automatic 3. Model W3D084R 4. Speeds 3					
	5. Retarder, Make, Type, and Size Integrated with Service Brake					
G.	Axle, Front					
	1. Manufacturer					
	2. Type Rigid Knuckle Model VO4/11-DL-74. GAWR Kg. Lbs.					
н.	Axle, Center Drive					
	1. Manufacturer					
	2. Type Tubular 3. ModelNR7/4DL-10 4. GAWR Kg. Lbs.					
J.	Axle, Rear Drive					
	1. Manufacturer Planetary Gear					
	2. Type Hub Reduct-3. ModelH07/8DL-10 4. GAWR Kg. Lbs.					

К.	Suspension	
	Air X Steel Spring	Torsion Bar
L.	<u>Brakes</u> 1. Make	Service Brake - Dual Circuit Comp.Air Parking Brake - Spring Actuated TypeAuxiliary Brake - MB Retarder/Exhaust Brake
м.	Interior Lighting	Bus Stop Brake on Central Axle
	1. Type	Fluorescent
	2. Number of Fixtures	12
N.	Tires	
	1. Manufacturer	
	2. Size	11.00 x 22.5
	3. Type -	Tubeless
0.	Air Conditioning	
	1. Make 2. Mode	el 3. Capacity
Ρ.	Kneeling Feature Available	Yes No X
Q.	Wheelchair Lift Available	Yes <u>x</u> No
R.	1. Model	ic Trolley Bus? Yes <u>X</u> No Plant? Yes No KW
	-	

LEYLAND VEHICLES LTD.

MANUFACTURERS PROFILE

Α.	FIRM	LEYLAND BUS
в.	ADDRESS	LEYLAND VEHICLES LTD
		LEYLAND
		PRESTON PR5 1SN ENGLAND
с.	TELEPHONE	LEYLAND 21400
D.	TELEX	67515 E. CABLE
F.	OTHER MANUI	FACTURING SITES LEYLAND - DAB SILKEBORG DENMARK
	C H ROE LEE	EDS - LEYLAND NATIONAL WORKINGTON ENGLAND
G.	NUMBER OF	YEARS EXPERIENCE PRODUCING BUSES 80
н.	BRIEF DESCI	RIPTION OF PRODUCT LINE DOUBLE & SINGLE DECK
		CHASSIS FOR URBAN, INTER-URBAN AND TOURING
I.	PRODUCTIVE	CAPACITY 5000 BUSES PER YEAR
J.	COMPLIANCE	WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	YES	NO UNKNOWN
K.	COMPLIANCE	WITH NOISE STANDARDS
	YES	NO UNKNOWN
L.	COMPLIANCE	WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS
	YES	NO UNKNOWN

M. VEHICLE TYPE

Front end horizontal under floor axial engine with the second axlc powered.

Vertical front engine with second axle powered.

Side mounted engine with second axle powered.

Rear engine with thurd axle powered.

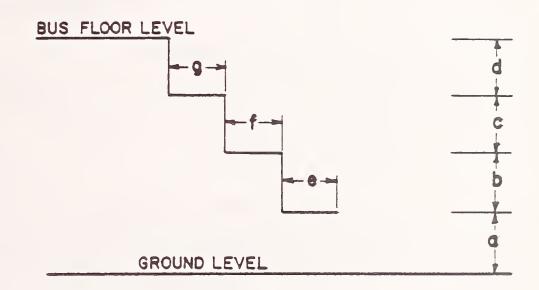
Rear engine with second axle powered.

Engine immaterial, with hydrostatic or electric transmission.

APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED

Α.	Bus	Manufa	acturer	LEY	LAND BUS					-	
в.	Bus	Model	Number	AR	ric						
С.	Dime	ension	S								
	1.	Overa	all Leng	th	17.355	Μ.		56	Ft.	11	In.
	2.	Overa	all Widt	h	2.5	Μ.		8	Ft.	2 ¹ 2	In.
	3.	a. 01	verall H	eight	(maximum)			3.2	_М.	126	In.
		b. He	eight (ma	ain ro	oof line)		3	3.2	м.	126	In.
	4.	Angle	e of App	roach						8	Deg.
	5.	a.B:	reakover	Angle	e Tractor					ó	Deg.
		Ъ. В:	reakover	Angle	e Trailer					5	Deg.
	6.	Angle	e of Depa	arture	2					8	Deg.
	7.	Arti	culation	Angle	25						
		a.He	orizontal	1						45	Deg.
		b. V	ertical							10	Deg.



LEYLAND VEHICLES, LTD. - MODEL DAB ENGLAND

8. Doorway Clear Opening (Including grab handles)

a.	Front	Width	<u>1.2</u> M.	47.2	_In.
		Height	<u>1.96</u> M.	77.2	_In.
b.	Center (if provided)	Width	<u>1.2</u> M.	47.2	In.
		Height	2.04 M.	80.3	In.
с.	Rear	Width	<u> 1.2 M</u> .	47.2	In.
		Height	2.04 M.	80.3	In.

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

		Front Door		Center	Door.	Rear Door		
a. Emp	ty Bus	<u>383</u> mm.	<u>15.1</u> in.	<u>303 mm</u> .	<u>11.9</u> in.	303 mm.	<u>11.9</u> in.	
Knee	eling bus	m.	<u> </u>	mm.	<u> </u>	mm.	<u> </u>	
Ъ.		<u>212</u> mm.	<u>8.3</u> in.	205 mm.	8.1 in.	205 mm.	8.1in.	
с.		<u>212</u> mm.	<u>8.3</u> in.	205 mm.	8.1 in.	205 mm.	8.1in.	
d.		<u> </u>	<u> </u>	205 mm.	8.1 in.	205 mm.	8.1 _{in} .	
e.		<u>320 mm</u> .	<u>12.6</u> in.	325 mm.	12.8 in.	325 mm.	<u>12.8</u> in.	
Ē.		300 mm.	<u>11.9</u> in.	275 _{mm} .	10.8 in.	275 mm.	10.8 _{in} .	
60.		mm.	<u> </u>	215 mm.	8.5 in.	215 mm.	8.5 _{in} .	

10.	Interior Head Room (center of aisle)
	a. Front Axle Location 2100 mm. 82.7 in.
	b. Drive Axle Location <u>2060 mm. 81.1 in.</u>
	c. Trailer Axle Location 2060 mm. 81.1 in.
11.	Aisle Width
	Between Transverse Seats (minimum) 500 mm. 19.6 in.
12.	Floor Height Above Ground (at each door)
	a. Front Door 804 mm. 31.7 in.
	b. Center Door (if provided) 914 mm. 36 in.
	c. Rear Door <u>914</u> mm. <u>36</u> in.
1 2	Herizontal Turning Envelope
τς.	Horizontal Turning Envelope
	a. Outside Body Turning Radius including bumper
	<u>12 M. 39 Ft. 4 In.</u>
	b. Inside Turning Radius
	<u>5.5 M. 18 Ft. 0.5 In.</u>
	c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer
	0.8 M. 2 Ft. 7.5 In.
14.	Wheel Bases
	a. Tractor <u>5.9 M. 19 Ft. 4 In.</u>
	b. Trailer <u>6.98 M</u> . <u>22</u> Ft. <u>11</u> In.
	c. Total <u>12.88 M</u> . <u>42</u> Ft. <u>3</u> In.
15	Seats
1.2.	
	a. Total Number of Seats DEPENDANT ON CUSTOMER
	b. Minimum Knee to Hip Room REQUIREMENT
	c. Minimum Foot Room

/

D.	Full Complement Weight of Bus of Fuel, Oil, Water At GVWR
	1. On Front Axle 5100 Kg. 11244 Lbs. 7100 Kg. 15653 Lbs.
	2. On Center Axle ⁵⁸⁰⁰ Kg. 12787 Lbs. ¹¹⁰⁰⁰ Kg. ²⁴²⁵¹ Lbs.
	3. On Rear Axle ³⁶⁰⁰ Kg. ⁷⁹³⁷ Lbs. ⁷¹⁰⁰ Kg. ¹⁵⁶⁵³ Lbs.
	4. TOTAL 14500 Kg. 31968 Lbs. 24000 Kg. 52910 Lbs.
	4. IVINE
E.	Main Engine
	1. Manufacturer LEYLAND VEHICLES
	2. Type <u>6 CYL DIESEL</u> 3. Model <u>TLllH</u>
	4. Net S.A.E. Horsepower 218 HP
	at <u>2100</u> RPM
	5. Turbo Charge, Make & Type GARRETT AIRESEARCH
	6. Maximum Vehicle Speed 86 KPH 53.5 MPH
F.	Transmission
	1. Manufacturer LEYLAND VEHICLES
	2. Type FLUID FLYWHEEL 3. Model HYDRACYCLIC4. Speeds 5
	5. Retarder, Make, Type, and Size <u>INTEGRAL</u>
G.	Axle, Front
	1. Manufacturer LEYLAND VEHICLES
	2. Type I BEAM 3. Model 4. GAWR 7100 Kg. 15653 Lbs.
Н.	Axle, Center Drive
	1. Manufacturer LEYLAND - EATON SPIRAL
	2. Type <u>BEVEL</u> 3. Model <u>19128</u> 4. GAWR <u>11,000Kg.24251</u> Lbs.
J.	Axle, Rear
	1. Manufacturer LEYLAND VEHICLES
	2. Type I BEAM 3. Model 4. GAWR 7100 Kg.15653 Lbs.

Κ.	Suspension	
	Air Steel Spring	Torsion Bar
L.	Brakes	
	1. Make LEYLAND	Type AIR ACTUATED 'S' CAM
м.	Interior Lighting	
	1. Type	DIFFUSED FLUORESCENT TUBE
	2. Number of Fixtures	7 CENTRALLY MOUNTED
Ν.	Tires	
	1. Manufacturer TO CUS	TOMER REQUIREMENT
	2. Size <u>llR x</u>	22.5 12R x 22.5
	3. Type RADIAL	
0.	Air Conditioning	
		lel 3. Capacity
	REQUIREMENT	Yes No 🗸
	Kneeling Feature Available	
Q.	Wheelchair Lift Available	Yes No
		1
R.	Vehicle available as Election	ric Trolley Bus? Yes No
	1. Model	
		Plant? Yes No KW

MANUFACTURERS PROFILE

	Α.	FIRM	MAGIRUS	-	IVECO	CORP.	(BUS	DIVISION)	
--	----	------	---------	---	-------	-------	------	-----------	--

B. ADDRESS	Hauptstrasse 17 - 19	
	6500 Mainz - Mombach	

C. TELEPHONE 6131 696 271 or 696 456 or 6961

D. TELEX 4187851 A MAD D E. CABLE Cable

F. OTHER MANUFACTURING SITES Italy - France - Greece

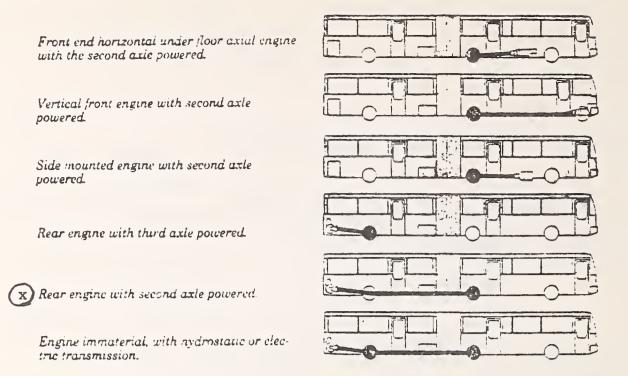
G. NUMBER OF YEARS EXPERIENCE PRODUCING BUSES Since 1948

H. BRIEF DESCRIPTION OF PRODUCT LINE Buses and Coaches for 12 -170 Persons, Trucks From 1.5 to GVWR

I. PRODUCTIVE CAPACITY 5,000 per year BUSES PER YEAR

J. COMPLIANCE WITH U.S. OR CALIFORNIA EMISSION STANDARDS

YES	x	NO	UNKNOWN	

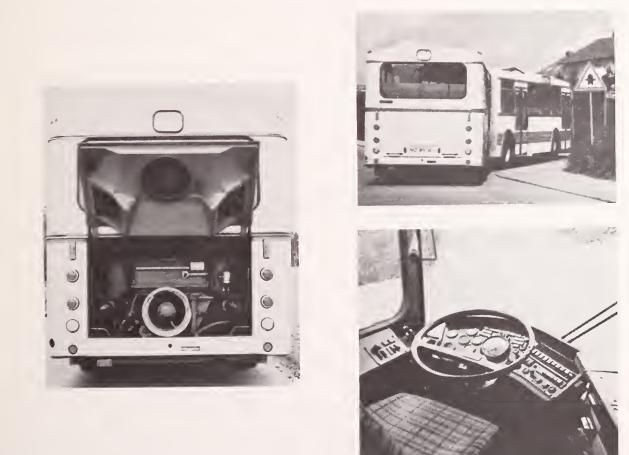

K. COMPLIANCE WITH NOISE STANDARDS

YES X NO UNKNOWN

L. COMPLIANCE WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS

YES	NO	UNKNOWN	x

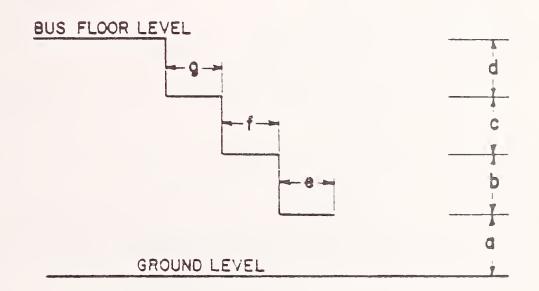
M. VEHICLE TYPE


APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED

Α.	Bus M	lanufacturer MAGIRUS IVEGO			
В.	Bus Y	10del Number			
С.	Dimer	nsions			
	1.	Overall Length 16.7 M.	St		In.
	2.	Overall Width 2.5 M.	Ft		In.
	3.	a. Overall Height (maximum) 3.20	м		_In.
		b. Height (main roof line) 2.95	м		In.
	4.	Angle of Approach	_	9	Deg.
	5.	a. Breakover Angle Tractor	_	6	Deg. 30'
		b. Breakover Angle Trailer	_	5	Deg. 30'
	ó.	Angle of Departure	-	13	Deg.
	7.	Articulation Angles			
		a. Horizontal	-	43	Deg.
		b. Vertical	_	10	Deg.

MAGIRUS-DEUTZ A.G. - MODEL SH170 W. GERMANY



8. Doorway Clear Opening (Including grab handles)

a.	Front	Width	1.22	_M.	In.
		Height	2.09	М.	In.
Ъ.	Center (if provided)	Width	1.22	М.	In.
		Height	2.09	<u>M</u> .	In.
с.	Rear	Width	1.22	_M.	In.
		Height	2.09	_M.	In.

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

	Front Door	Center	Dcor	Rear Door	
a. Empty Bus	<u>325</u> mm.	in. <u>325</u> mm.	in.	<u>325</u> mm.	_in.
Kneeling bus	mm	inmm.	in.	m	_in.
ъ.	<u>200 </u>	in. <u>200</u> mm.	in.	<u>225</u> mm.	_in.
c.	<u>200</u> min	in. <u>200</u> mm.	in.	<u>225</u> mm.	_in.
d.	m:	in. <u>15</u> mm.	in.		_in.
e.	<u>400 mm</u>	in. <u>315</u> mm.	in.	315 mm.	_in.
Í.	<u>700</u> mm	in. <u>310</u> mm.	in.	310 mm.	_in.
3.		inmm.	in.	. m	in.

10. Interior Head Room (center of aisle) a. Front Axle Location mm. in. 2100 b. Drive Axle Location 2100 mm. in. c. Trailer Axle Location 2050 mm. in. 11. Aisle Width Between Transverse Seats (minimum) 530 mm. in. 12. Floor Height Above Ground (at each door) 740 mm. _____in. a. Front Door b. Center Door (if provided) 740 mm. in. 795 c. Rear Door mm. in. 13. Horizontal Turning Envelope a. Outside Body Turning Radius including bumper <u>10.90 M.</u> Ft. In. b. Inside Turning Radius 4.42 M. Ft. In. c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer M. Ft. In. 7.77 14. Wheel Bases 5.600 M. Ft. In. a. Tractor b. Trailer 6.355 M. Ft. In. 11.955 M. Ft. In. c. Total 15. Sears a. Total Number of Seats 63 b. Minimum Knee to Hip Room 680 mm 300 mm c. Minimum Foot Room

D.	Weight of Bus	Full Comp of Fuel, Oi		At GVWR	
	1. On Front Axle	<u>6.000</u> Kg.	Lbs.	Kg	Lbs.
	2. On Center Axle	1 <u>0.500</u> Kg.	Lbs.	Kg	_Lbs.
	3. On Rear Axle	<u>8.200</u> Kg.	Lbs.	Kg	Lbs.
	4. TOTAL	24.700 Kg.	Lbs.	Kg	_Lbs.
Ε.	Main Engine				
	1. Manufacturer	KEOECKNER HUMI	BOLDT DEUTZ		
	2. Type 7 Cylinder	. V	3. Model	BF 8 L 413 F	
	4. Net S.A.E. Hors	sepower	310 HF	· ·	
		at	2150 RF	M	
	5. Turbo Charge, M	lake & Type	KSB K 27/30	60 G 13.11	
	6. Maximum Vehicle	e Speed -	<u>88</u> KPH	55	MPH
F.	Transmission				
	1. Manufacturer	VOITH			
	2. Type <u>Automatic</u>	3	odel DIWA 8	54 4. Spe	eds _4
	5. Retarder, Make	, Type, and	Size Inte	egrated - Voith	1
G.	Axle, Front				
	1. Manufacturer _	MAGIRUS			
	2. Type 3	. Model	4. GAWE	6.000 Kg.	Lbs.
Η.	Axle, Center Drive	2			
	1. Manufacturer	MAGIRUS			
	2. Type 3		4. GAWE	1 <u>0.500</u> Kg.	Lòs.
J.	Axle, Rear				
	1. Manufacturer _	MAGIRUS			
	2. Type 3	. Mcdel	GAWF	8.200 Kg.	lòs.

.

К.	Suspension					
	Air <u>Torsion Bar Ste</u>	el Spring		Torsion Bar		
L.	Brakes					
	1. Make <u>Rockwell</u>		Type	RD 1570 - M 1/	'M 2	
м.	Interior Lighting					
	1. Type		On Requ	lest		
	2. Number of Fixtu	res	On Requ	lest		
N.	Tires					
	1. Manufacturer _	MICHELIN A	AND OTHERS			
	2. Size	11 R 22.5		315/75 R 22	.5	
	3. Type -	Radial				
0.	Air Conditioning					
	1. Make KONVEKTA	2. Mod	el <u>KL 10</u>	3. Capaci	ty 40.000 KC	AL/1
Ρ.	Kneeling Feature A	vailable	Yes <u>x</u>	No		
Q.	Wheelchair Lift Av	ailable	Yes x	No		
R.	Vehicle available		ic Trolley	Bus? Yes	No x	
	 Model Auxiliary Therm 		Plant? Vo	No	XW	
	- A ACKALLALY LICES	ar rower	rearies is		LXII	

Ŧ

M.A.N. TRUCK AND BUS CORP.

MANUFACTURERS PROFILE

Α.	FIRM M.A.N. TRUCK & BUS CORPORATION
Β.	ADDRESS 3000 TOWN CENTER
	SOUTHFIELD, MICHIGAN 48075
с.	TELEPHONE (313) 352-7850
D.	TELEX 234249 MAN SOFD E. CABLE
F.	OTHER MANUFACTURING SITES CLEVELAND, NORTH CAROLINA
G.	NUMBER OF YEARS EXPERIENCE PRODUCING BUSES
Н.	BRIEF DESCRIPTION OF PRODUCT LINE Responsible for marketing, sales
	engineering, manufacturing, assembly and supply of M.A.N. articulated buses, including product support, technical assistance, service and supply of
	spare parts.
I.	PRODUCTIVE CAPACITY Approximately 390 BUSES PER YEAR
J.	COMPLIANCE WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	YES X NO UNKNOWN
К.	COMPLIANCE WITH NOISE STANDARDS
	YES X NO UNKNOWN
L.	COMPLIANCE WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS
	YES X NO UNKNOWN

M. VEHICLE TYPE

 XXX
 Front end horizontal under floor axial engine with the second axle powered.

 Vertical front engine with second axle powered.

 Side mounted engine with second axle powered.

 Rear engine with third axle powered.

 Rear engine with second axle powered.

 Engine immaterial, with hydrostatic or electric transmission.

APPENDIX C

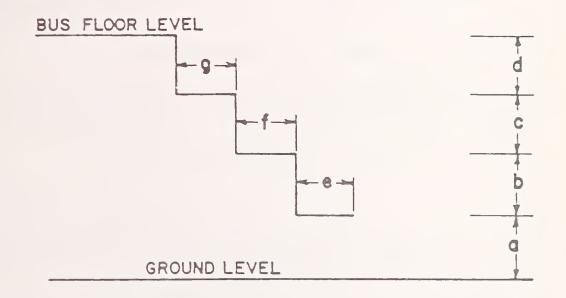
TECHNICAL INFORMATION TO BE FURNISHED

Α.	Bus	Manufacturer	M.A.N. TRUCK		

B. Bus Model Number SG220-16.5

C. Dimensions

1.	Overall Length	18251.46	Μ.	59	Ft.	10.56	_In.
2.	Overall Width	2578.10	Μ.	N/A	Ft.	101.5	_In.
3.	a. Overall Height	(maximum)		3175	M.	125	_In.
	b. Height (main ro	of line)		-	M.		_In.
4.	Angle of Approach					8	_Deg.
5.	a. Breakover Angle	e Tractor				8	_Deg.
	b. Breakover Angle	e Trailer				N/A	_Deg.
6.	Angle of Departure	2				8	_Deg.
7.	Articulation Angle	25					
	a. Horizontal					Approx.3	2Deg.
	b. Vertical (Maximu	m)				10	_Deg.



8. Doorway Clear Opening (Including grab handles)

a.	Front	Width	<u>1249.68</u> M.	49.2	_In.
		Height	<u>2032</u> M.	80	_In.
b.	Center (if provided)	Width	1249.68 M.	49.2	_In.
		Height	2032 M.	80	_In.
с.	Rear	Width	1249.68 M.	49.2	_In.
-		Height	2032 M.	80	_In.

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

		Front	Door	Center	Door	Rear I	Door
a.	Empty Bus	m.	14.45in.	m.	14.45 in.	m.	14.45 _{in} .
	Kneeling bus	m.	<u>12.80</u> in.	m.	<u>12.80</u> in.		12.80in.
Ъ.		m.	<u>7.7</u> in.	mm .	7.7_in.		7.9 in.
с.		m.	<u>7.7</u> in.	m.	7.7_in.	m.	7.9 in.
d.		m.	7.7_in.	m.	7.7 in.	m.	7.9 in.
е.		m.	10.7 in.	m.	10.7 in.	m.	12.0 in.
f.		mm .	10.5 in.	m.	10.5 in.	m.	12.0 in.
g.		m.	10.5 in.	m.	10.5 in.	m.	12.0 in.

10.	Interior Head Room (center of aisle)
	a. Front Axle Location <u>1981.2 mm. 78.0 in.</u>
	b. Drive Axle Location <u>1981.2 mm. 78.0</u> in.
	c. Trailer Axle Location <u>1981.2 mm. 78.0</u> in.
11.	Aisle Width
	Between Transverse Seats (minimum) <u>584.2 mm. 23.0 in.</u>
12.	Floor Height Above Ground (at each door)
	a. Front Doormmmm
	b. Center Door (if provided)mmin.
	c. Rear Doormm. <u>36.5</u> in.
13.	Horizontal Turning Envelope
	a. Outside Body Turning Radius including bumper
	<u> </u>
	b. Inside Turning Radius
	- <u>M. 22.2</u> Ft In.
	c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer
	<u> </u>
14.	Wheel Bases
	a. TractorMFt. <u>222.437</u> In.
	b. TrailerMFt. <u>255.5</u> In.
	c. Total <u>- M Ft. 447.937</u> In.
15.	Seats
	a. Total Number of Seats <u>65+Driver</u>
	b. Minimum Knee to Hip Room <u>29 in. tractor; 27 in. trailer</u>
	c. Minimum Foot Room

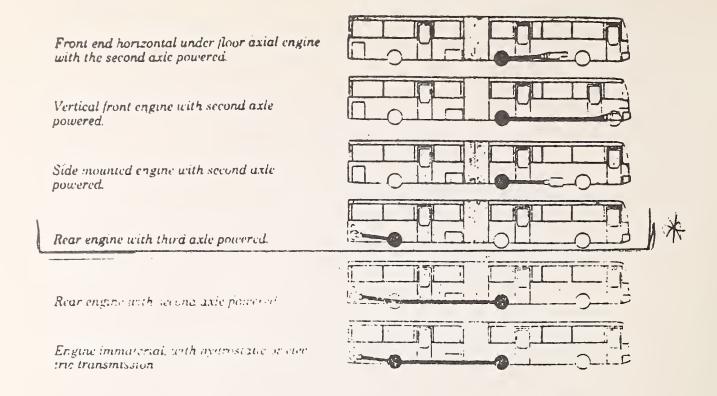
MAN- (4)


Ŧ

D.	Full ComplementWeight of Busof Fuel, Oil, WaterAt GVWR
	1. On Front Axle Kg. 11620 Lbs Kg. 14690 Lbs.
	2. On Center Axle - Kg. 14920 Lbs Kg. 22670 Lbs.
	3. On Rear Axle - Kg. 11260 Lbs Kg. 15290 Lbs.
	4. TOTAL - Kg. 37800 Lbs Kg. 52650 Lbs.
E.	Main Engine
	1. Manufacturer M.A.N. AG
	2. Type Intercooled 3. Model D2566 MLUM/US
	4. Net SXXXXXX Horsepower 305 HP
	D.I.N. at <u>2200</u> RPM
	5. Turbo Charge, Make & Type _ KKK 4LGZ 352C 30.22
	6. Maximum Vehicle SpeedKPH 2200 MPH Full Load
F.	Transmission
	1. Manufacturer Renk AG
	2. Type Doromat 3. Model D874A 4. Speeds $5\binom{4}{12}$
	5. Retarder, Make, Type, and Size <u>Renk</u>
G.	Axle, Front
	1. Manufacturer M.A.N. AG
	2. TypeIndependent 3. Model V-7 70SL 4. GAWR - Kg. 16534 Lbs.
Н.	Axle, Center Drive
	1. Manufacturer M.A.N. AG
	2. Type Drive 3. Model <u>H07-10120</u> 4. GAWRKg. 24250 Lbs.
т	Arria Baar
J.	Axle, Rear
J .	1. Manufacturer M.A.N. AG

Κ.	Suspension	
Full	Air XX Steel Spring	Torsion Bar -
-		
L.	Brakes	
	1. Make M.A.N. AG Typ	e
Μ.	Interior Lighting	
	1. Type Lumir	nator Fluorescent or Equal
	2. Number of Fixtures 13	
N.	Tires	
	1. Manufacturer Michelin	
	2. Size 13/75 R 22.5	
	3. Type Tubeless	
0.	Air Conditioning	
	1. Make <u>Trane</u> 2. Model	3. Capacity
Ð	Kneeling Feature Available Ye	s XX No
4 •		
Q.	Wheelchair Lift Available Ye	s XX No
R.	Vehicle available as Electric Tr	olley Bus? Yes XX No
	1. Model <u>N/A</u>	
	2. Auxiliary Thermal Power Plant	? Yes - No - KW -

The above specifications are for 16.5m/55-foot articulated bus and are subject to change without prior notice. Some of the above items may change for 18m/60-foot articulated bus. For complete information, contact M.A.N. Truck & Bus Corporation.



MAN-6B

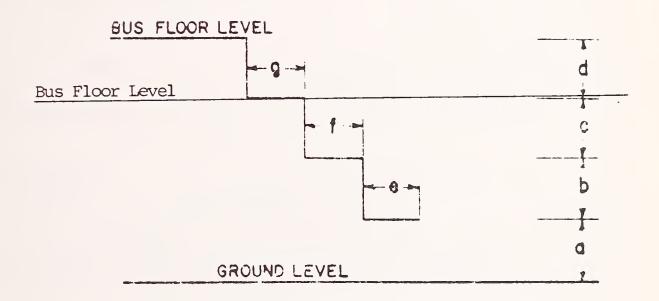
NEOPLAN

MANUFACTURERS PROFILE

А.	FIRM Neoplan USA Corporation
В.	ADDRESS 700 Gottlob Auwaerter Drive Iamar, Colorado 81052
С.	TELEPHONE (303) 336 3256
D.	TELEX 00230450365 E. CABLE
F.	OTHER MANUFACTURING SITES Stuttgart, Pilsting, and
	Berlin, Germany; and Kumasi, Ghana.
G.	NUMBER OF YEARS EXPERIENCE FRODUCING BUSES 47
E.,	BRIEF DESCRIPTION OF PRODUCT LINE Transit Buses, Luxury High Deck
	City Liners, Articulated Buses, Skyliner Double Deckers, Airport Buses and The Litl' Bus.
T +	PRODUCTIVE CAPACITY 500 BUSES PER YEAR
J.	COMPLIANCE WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	YES x NO UNKNOWN
Χ.	COMPLIANCE WITH NOISE STANDARDS
	YES x NO UNKNOWN
Ľ.	COMPLIANCE WITH FEDERAL MOTOR "EHICLE SAFETY STANDARDS
	YES X NO UNKNOWN
	*Neoplan USA Corporation is represented by: Rolf Ruppenthal and Associates Neoplan USA Sales 627 South Broadway Suite B Boulder, Colorado 80303 (303) 499 4040
	NEO (1)

APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED


А.	Bus	Manufacturer	Neoplan USA Corporation					
В.	Bus	Model Number	N421					
С.	Dime	ensions						
	1.	Overall Leng	ch	м.	55 or 60*	_Ft.		_In.
	2.	Overall Widt		м.	÷	_Ft.	96-102	_In.
	3.	a. Overall a	leight (maximum)			_ M.	122	_In.
		b. Height (m	main roof line)			_ М.		_In.
	4.	Angle of App	oroach				10	_Deg.
	5.	a. Breakover	Angle Tractor				10	_Deg.
		b. Breakovei	Angle Trailer				14	Deg.
	6.	Angle of Dep	parture				10	_Deg.
		Articulation	n Angles					
		a. Horizonta	1					_Deg.
		b. Vertical						_Deg.
		*All follow	ing technical infor	mati	on will be	based	on the (60' lengtl

Doorway Clear Opening (Including grab handles)

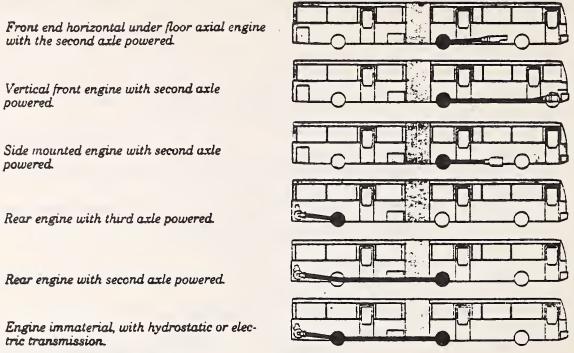
a.	Front	Width	M.	31.75	_In.
		Height	M.	78.0 not	_In.
b.	Center wif provided)	Width	M.	applica not	bl p n.
		Height	M.	applica	blen.
с.	Rear	Width	М.	40	_In.
		Height	М.	86.5	In.

3. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

		Front Door	Center Door	Rear Door
з.	Empty Bus	mm. <u>13.8</u> in.	not applicable in.	
	Kneeling bus	mmin.	inin.	mmin.
5.		mm. <u>8.7</u> in.	mmin.	10.6 in.
с.		mm. 8.7 in.	mmin.	
d.			mmin.	
은 . ·		11.0 in.	inin.	mm.11.6in.
			ióm. in.	11.5 not in.
67		mm. applicable	ະinin.	applicable

10.	Interior Head Room (center of aisle)
	a. Front Axle Location mm. 86.6 in.
	b. Drive Axle Location mm. 83.5 in.
	c. Trailer Axle Locationmm. 79.5 in.
11.	Aisle Width
	Between Transverse Seats (minimum)mmin.
12.	Floor Height Above Ground (at each door)
	a. Front Door mm. in.
	b. Center Door (if provided)mmin.
	c. Rear Doormmin.
13.	Horizontal Turning Envelope
	a. Outside Body Turning Radius including bumper
	MFt. 498In.
	b. Inside Turning Radius
	MFtIn.
	c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer
	MFtIn.
14.	Wheel Bases
	a. TractorMFt. <u>219.2</u> In.
	b. Trailer
	c. TotalMFt. <u>425.8</u> In.*
15.	Seats **
,	a. Total Number of Seats up to 74
	b. Minimum Knee to Hip Room 29.1-30.7"
	c. Minimum Foot Room
	*Varies subject to specifications, another version has a 46.7" wheel base **Subject to seat specifications

D.	Full Complement Weight of Bus of Fuel, Oil, Water At GVWR						
	1. On Front Axle Kg. Lbs. Kg. Lbs.						
	2. On Center Axle Kg. Lbs. Kg. Lbs.						
	3. On Rear Axle Kg. Lbs. Kg. Lbs.						
	4. TOTAL Kg. 40,300 Lbs. Kg. Lbs.						
E.	Main Engine						
	1. Manufacturer Detroit Diesel Allison						
	2. Type Rear Diesel 3. Model 8V-92TA						
	4. Net S.A.E. Horsepower 381 HP						
	at 2100 RPM						
	5. Turbo Charge, Make & Type D.D.A.						
	6. Maximum Vehicle Speed KPH MPH						
F.	Transmission						
	1. Manufacturer Detroit Diesel Allison						
	2. Type Automatic 3. Model HT740D 4. Speeds 4						
	5. Retarder, Make, Type, and Size						
G.	Axle, Front						
	1. Manufacturer Neoplan with Daimler Benz VO4 hub						
	2. Type independent. Model 4. GVWR Kg. 6.5 tons.						
н.	Axle, Center Drive						
	1. Manufacturer Daimler Benz						
	2. Type 3. Model NR 7/4 DL-104. Grwn Kg. 10 Lbs.						
J.	Axle, Rear						
	1. Manufacturer Daimler Benz						
	Hypoid with 2. Type Hubreduction Model Ho7 4. GVWR Kg. Lbs.						

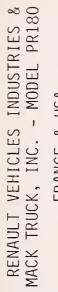

к.	Suspension
	Air x Steel Spring Torsion Bar
L.	Brakes
• ما	Daimler Benz S Cam 1. Make Daimler Benz
М.	Interior Lighting
	1. Type
	2. Number of Fixtures
	· · · · · · · · · · · · · · · · · · ·
Ν.	Tires
	1. Manufacturer <u>Michelins are standard</u>
	2. Size 12.5 x 22.5
	3. Typetubeless
0	
0.	Air Conditioning
	1. Make Suetrak 2. Model ac 38 5 3. Capacity 16 tons
Ρ.	Heating - 240,000 BTU Kneeling Feature Available Yes No No
Q.	Wheelchair Lift Available Yes No
R.	Vehicle available as Electric Trolley Bus? Yes <u>x</u> No
*	1. Model
	2. Auxiliary Thermal Power Plant? Yes No KW
	* Subject to customer's electrical system

RENAULT VEHICLES and MACK TRUCKS

MANUFACTURERS PROFILE

Α.	FIRM	Renault Vehicules Industriels						
в.	ADDRESS	c/o Mack Trucks, Inc.						
		Box M - 2100 Mack Boulevard						
		Allentown, Pa. 18105						
с.	TELEPHONE	215/439-3756						
		0847429 E. CABLE MACKWORLDWIDE ATW						
F.	OTHER MANU	FACTURING SITES Lyon, France						
G.	NUMBER OF	YEARS EXPERIENCE PRODUCING BUSES 75 years						
н.	BRIEF DESCRIPTION OF PRODUCT LINE Complete line of							
	Intra-City and Inter-City buses and coaches							
I.	PRODUCTIVE	CAPACITY Not Public BUSES PER YEAR						
J.	COMPLIANCE	WITH U.S. OR CALIFORNIA EMISSION STANDARDS						
	YES X	NO UNKNOWN						
К.	COMPLIANCE	WITH NOISE STANDARDS						
	YES X	NO UNKNOWN						
L.	COMPLIANCE	E WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS						
	YES X	NO UNKNOWN						

Μ. VEHICLE TYPE


tric transmission.

Rear Engine driving both rear and middle axle - using four speed automatic transmission, and torque splitter between rear and middle axle.

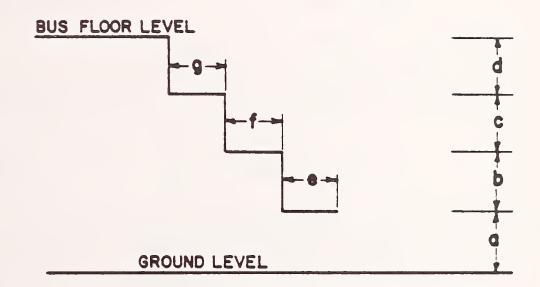
APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED

Α.	Bus N	lanufacturer	Renault Vel	nicules	Industri	es		
Β.	Bus N	Nodel Number PR 18	30					
С.	Dimer	nsions						
	1.	Overall Length	17542	м	57.66	Ft.		_In.
	2.	Overall Width	2500	Μ		_Ft.	98	_In.
	3.	a. Overall Height	(maximum)		2890	м.	119	In.
		b. Height (main roo	of line)			_ M		In.
	4.	Angle of Approach				_	8	Deg.
	5.	a. Breakover Angle	Tractor			-	8	Deg.
		b. Breakover Angle	Trailer			-	8	Deg.
	6.	Angle of Departure				-	8	Deg.
	7.	Articulation Angle	S					
		a. Horizontal				_	51	Deg.
		b. Vertical				_	+ 7	Deg.

FRANCE & USA

RENAULT VEHICLES INDUSTRIES & MACK TRUCK, INC. - MODEL PR180

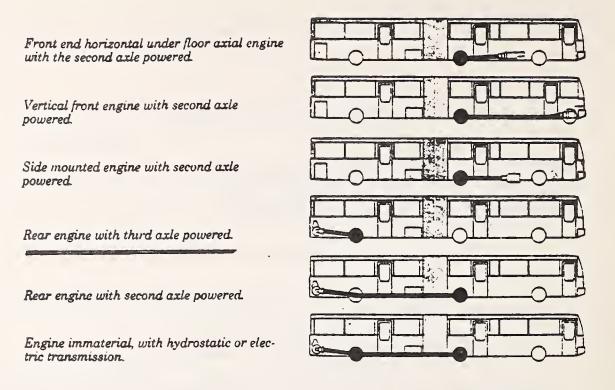

FRANCE & USA

8. Doorway Clear Opening (Including grab handles)

a.	Front	WidthM47.2 In	. •
		Height <u>2190</u> M. <u>86.25</u> In	. •
b.	Center (if provided)	WidthM47.2 In	. •
		Height 2190 M. 86.25 In	. •
с.	Rear	WidthM. 47.2 In	. •
		HeightM86.25 In	

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

		Front	Door	Center	Door.	Rear	Door
a.	Empty Bus	m.	<u>14.3</u> in.	m.	<u>14.3</u> in.	m.	<u>14.3</u> in.
	KHEGINHGX SUS	m.	in.	m.	in.	mm .	in.
b.		m.	<u> 5.9</u> in.	m.	<u>5.9</u> in.	m.	5.9 in.
c.		mm.	<u>5.5</u> in.	m.	<u>5.5</u> in.	m.	5.5 in.
XX.		mm.	in.	mm .	in.	mm .	in.
e.,	Not Given	m.	in.	m.	in.	mm .	in.
£.3	Variable Width	m.	in.	mm .	in.	mm .	in.
g.)		m.	in.	mm .	in.	mm .	in.


10.4	Interior Head Room (center of aisle)
	a. Front Axle Location mm. 86.25 in.
	b. Drive Axle Location mm. 86.25 in.
	c. Trailer Axle Location mm. 86.25 in.
11.	Aisle Width Variable
	Between Transverse Seats (minimum)in.
12.	Floor Height Above Ground (at each door)
	a. Front Doormm. 24.4 in.
	b. Center Door (if provided)mm. 24.4 in.
	c. Rear Door mm. 24.4 in.
13.	Horizontal Turning Envelope
	a. Outside Body Turning Radius including bumper
	M. 38.2 Ft. In.
	b. Inside Turning Radius
	M. 15.5 Ft. In.
	c. Maximum Swing Out Radius of Right Rear curbside
	corner of Trailer
	MFtIn.
14.	Wheel Bases
	a. Tractor <u>5600 M</u> . Ft. <u>220.5</u> In.
	b. Trailer <u>6270</u> M. <u>Ft. 246.9</u> In.
	c. Total <u>11870</u> M. Ft. <u>467.4</u> In.
15.	Seats
	a. Total Number of Seats 68
	b. Minimum Knee to Hip Room -
	c. Minimum Foct Room

D.	Weight of Bus	Full Com of Fuel, O	plement il, Water	At GVWR	
	1. On Front Axle	Kg.	Lbs.	Kg	Lbs.
	2. On Center Axle	Kg.	Lbs.	Kg	Lbs.
	3. On Rear Axle	Kg.	Lbs	Kg	Lbs.
	4. TOTAL	Kg.	Lbs	Kg	Lbs.
E.	Main Engine				
	1. Manufacturer				
	2. Type		3. Model		
	4. Net S.A.E. Hors	epower _	HP		
		at _	RPM		
	5. Turbo Charge, M	lake & Type			
	6. Maximum Vehicle	Speed	КРН	MP	н
F.	Transmission				
	1. Manufacturer				
	2. Type	3.	Model	4. Speed	s
	 Type Retarder, Make, 				
G.					
G.	5. Retarder, Make,	Type, and	Size		
G.	5. Retarder, Make, <u>Axle, Front</u>	Type, and	Size		
	5. Retarder, Make, <u>Axle, Front</u> 1. Manufacturer	Type, and	Size		
	5. Retarder, Make, <u>Axle, Front</u> 1. Manufacturer 2. Type 3.	Type, and Model	Size4. GAWR		
	5. Retarder, Make, <u>Axle, Front</u> 1. Manufacturer 2. Type 3. <u>Axle, Center Drive</u>	Type, and	Size4. GAWR	Kg	Lbs.
н.	5. Retarder, Make, <u>Axle, Front</u> 1. Manufacturer 2. Type 3. <u>Axle, Center Drive</u> 1. Manufacturer	Type, and	Size4. GAWR	Kg	Lbs.
н.	5. Retarder, Make, <u>Axle, Front</u> Manufacturer Type Axle, Center Drive Manufacturer Type Type 	Type, and Model	Size 4. GAWR 4. GAWR	Kg	Lbs.
н.	5. Retarder, Make, <u>Axle, Front</u> 1. Manufacturer 2. Type 3. <u>Axle, Center Drive</u> 1. Manufacturer 2. Type 3. <u>Axle, Rear</u>	Type, and Model	Size 4. GAWR 4. GAWR	Kg	Lbs.

К.	Suspension

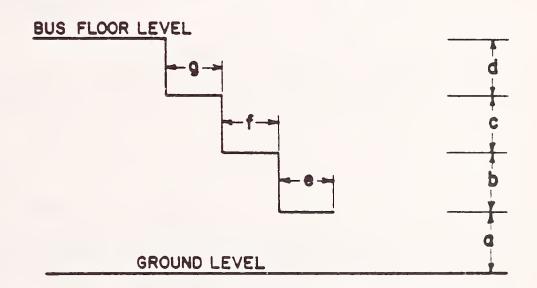
	Air Steel Sp Combination Air Bag and Stee		Torsion Bar
L.	Brakes		
	1. Make	Туре	Drum
М.	Interior Lighting		
	1. Type	Florescent	t
	2. Number of Fixtures	Variable	
N.	Tires		
	1. Manufacturer	Michelin	
	2. Size	11.70 x 22.5	
	3. Type	Radial (Or Cross	s Ply)
0.	Air Conditioning 1. Make Optional 2.	Model	3. Capacity
Ρ.	Kneeling Feature Availa	ble Yes	No <u></u>
Q.	Wheelchair Lift Availab	le Yes <u>x</u>	No
R.	Vehicle available as El	ectric Trolle	y Bus? Yes <u>x</u> No
	1. Model PER 180		
	2. Auxiliary Thermal Po	wer Plant? Y	es <u>X</u> No <u>KW</u> Variable

Α.	FIRM	SAAB-SCANIA, Scania Division
в.	ADDRESS	151-87 Sodertalje, Sweden
		· · ·
С.	TELEPHONE	0755/810 00
D.	TELEX 1	0 200 Scania S E. CABLE
F.	OTHER MAN	UFACTURING SITES <u>Nederland</u> , Argentina, Brazil
G.	NUMBER OF	YEARS EXPERIENCE PRODUCING BUSES 70
н.	BRIEF DES	CRIPTION OF PRODUCT LINE Chassis and buses
	for c	ity, intercity, and long distance operation
I.	PRODUCTIV	E CAPACITY 2700 chassis, 220 busesBUSES PER YEAR
J.	COMPLIANC	E WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	YES X	NO UNKNOWN
К.	COMPLIANC	E WITH NOISE STANDARDS
	YES X	NO UNKNOWN
L.	COMPLIANC	E WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS
	YES X	NO UNKNOWN

APPENDIX C

Α.	Bus	Manufacturer SAAB-SCANIA			
в.	Bus	Model Number 112A			
С.	Dime	ensions			
	1.	Overall Length M. 57,5	Ft.		_In.
	2.	Overall Width M	Ft.	102	_In.
	3.	a. Overall Height (maximum)	M.	124	_In.
		b. Height (main roof line)	M.	124	_In.
	4.	Angle of Approach		8,3	_Deg.
	5.	a. Breakover Angle Tractor			_Deg.
		b. Breakover Angle Trailer			_Deg.
	6.	Angle of Departure		7°	_Deg.
	7.	Articulation Angles			
		a. Horizontal			_Deg.
		b. Vertical			_Deg.

SAAB-SCANIA - MODEL BR 112A (CHASSIS ONLY) SWEDEN


.

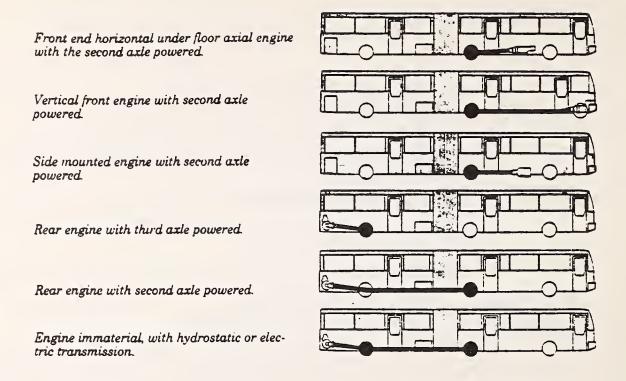
.

8. * Doorway Clear Opening (Including grab handles)

a.	Front	Width <u>1.2</u> MIn.
		Height <u>2.1 M.</u> In
Ъ.	Center (if provided)	Width <u>1.2</u> MIn.
		Height <u>2.1</u> MIn
с.	Rear	Width <u>1.2</u> MIn.
		Height 2.1 MIn

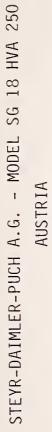
9. * Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

		Front	Door	Center	Dcor.	Rear I	Door
a.	Empty Bus	<u>350 mm.</u>	in.	350 mm.	in.	<u>350 mm</u> .	in.
	Kneeling bus	250 mm.	in.	m.	in.	mm .	in.
b.		255 mm.	in.	255 mm.	in.	255 mm.	in.
с.		255 mm.	in.	255 mm.	in.	255 mm.	in.
d.		m.	in.	mm .	in.	mm .	in.
e.		300 mm.	in.	300 mm.	in.	300 mm.	in.
f.		250 mm.	in.	250 mm.	in.	250 mm.	in.
g.		mm .	in.	m.	in.	mm .	in.

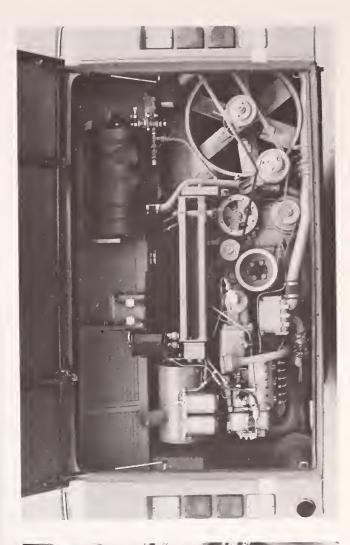

10.* Interior Head Room (cent	er of aisle)
a. Front Axle Location	2100 mmin.
b. Drive Axle Location	2000 mmin.
c. Trailer Axle Location	<u>2100 mm.</u> in.
11. * Aisle Width	
Between Transverse Seats	(minimum) 500 mmin.
12.* Floor Height Above Groun	d (at each door)
a. Front Door	670-930 mmin.
b. Center Door (if provi	ded) <u>670-930 mm. in.</u>
c. Rear Door	670-930 mmin.
12 Horizontol Turning Envol	
13. Horizontal Turning Envel	•
a. Outside Body Turning	•••
	•In.
b. Inside Turning Radius 5.5 M. Fr	-
c. Maximum Swing Out Rad corner of Trailer	ius of Right Rear curbside
0.25 MFt	In.
14. Wheel Bases	
a. Tractor <u>5.000</u> M.	FtIn.
b. Trailer <u>6.630</u> M.	FtIn.
c. Total <u>11.630</u> M.	FtIn.
15. *Seats	
a. Total Number of Seats	56-68
b. Minimum Knee to Hip R	Doom Dependent on seat configuration
c. Minimum Foot Room	

D.	Full Complement Weight of Bus of Fuel, Oil, Water At GVWR
	1. On Front Axle 4 100 Kg. Lbs. 6 300 Kg. Lbs.
	2. On Center Axle 4 380 Kg. Lbs. 8 300 Kg. Lbs.
	3. On Rear Axle 7 550 Kg. Lbs. 10 000 Kg. Lbs.
	4. TOTAL 16 030 Kg. Lbs. 24 600 Kg. Lbs.
E.	Main Engine
	1. Manufacturer Scania
	2. Type diesel, inline 6 cylinder3. Model DS1104
	4. Net S.A.E. Horsepower 260 HP
	at <u>2200</u> RPM
	5. Turbo Charge, Make & Type Schwitzer 4 LG7/352
	6. Maximum Vehicle Speed 107 KPH MPH
F.	Transmission
	1. Manufacturer Scania
	2. Type Automatic 3. Model GAV 762 4. Speeds 4
	5. Retarder, Make, Type, and Size Scania hydraulic retarder integrated in gearshifting program
G.	Axle, Front
	1. Manufacturer <u>Scania</u>
	2. Type Steering 3. Model AM 60 4. GAWR 6 500 Kg. Lbs.
н.	Axle, Center Drive
	1. Manufacturer Scania
	2. Type Trailing 3. Model AT 90 4. GAWR 10000 Kg. Lbs.
J.	Axle, Rear
	1. Manufacturer Scania
	2. Type Driving 3. Model AD 90 4. GAWR 10500 Kg. Lbs.

К.	Suspension						
	Air X St	eel Spring		Tor	rsion Bar		
L.	Brakes			dame. F	9 9 1 ,1		
	1. Make Scani	a	Type _				
Μ.	Interior Lighting						
	1. Type		Fluor	rescent 1	lube		
	2. Number of Fixt	ures					
Ν.	Tires						
	1. Manufacturer	Michelin			Continental		
	2. Size	11 R 22.5			12 R 22.5		
	3. Type	Rad	ial				
0.	Air Conditioning						
	1. Make	2. Mode	1		3. Capacit	.y	
Ρ.	Kneeling Feature	Available	Yes _	<u>X</u>	No		
0	Wheelchair Lift A	wailabla	Voc	Y	No		
Q.	WHEELCHAIL LILL A	vallable	163 _				
R.	Vehicle available	as Electri	.c Troll	ey Bus	? Yes	No X	
	1. Model						
	2. Auxiliary Ther		Plant?	Yes	No X	KW	

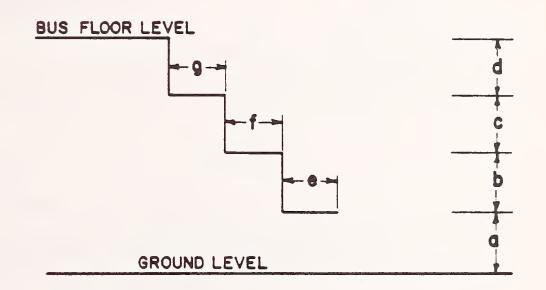

/

Α.	FIRM	STEYR-DAIMLER-PUCH AG, WERKE WIEN					
В.	ADDRESS	Zweite Haidequerstra 3					
		A-1110 VIENNA					
		AUSTRIA					
с.		(0222) 76 45 11					
D.	TELEX	131810 E. CABLE					
F.	OTHER MAN	UFACTURING SITES See attached information material					
G.	NUMBER OF	YEARS EXPERIENCE PRODUCING BUSES since 1906					
н.	BRIEF DESCRIPTION OF PRODUCT LINE See attached information						
	material						
I.	PRODUCTIV	E CAPACITY 1 - 2 BUSES PER XEXT DAY					
J.	COMPLIANC	E WITH U.S. OR CALIFORNIA EMISSION STANDARDS					
	YES	NO UNKNOWN _X					
К.	COMPLIANC	E WITH NOISE STANDARDS					
	YES	NO UNKNOWN X					
L.	COMPLIANC	E WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS					
	YES	NO UNKNOWN X					



APPENDIX C

Α.	Bus	Manufacturer <u>STEYR-DAIMLER-PUCH AG</u>	
Β.	Bus	Model Number <u>SG 18 HUA 250</u>	
C.	Dime	nsions	
	1.	Overall Length 18.135 M. Ft.	In.
	2.	Overall Width 2.500 M. Ft.	In.
	3.	a. Overall Height (maximum) <u>3.111</u> M.	In.
		b. Height (main roof line) M.	In.
	4.	Angle of Approach	8_Deg
	5.	a. Breakover Angle Tractor	Deg
		b. Breakover Angle Trailer	Deg
	6.	Angle of Departure	8 Deg
	7.	Articulation Angles	
		a. Horizontal	Deg
		b. Vertical	<u> 12 </u> Deg

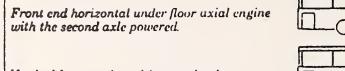


.

8. Doorway Clear Opening (Including grab handles)

a.	Front	Width _	1.250	_M	In.
	TRACTOR	Height _	2.050	_M	In.
b.	Rear (if provided)	Width _	1.250	_M	In.
		Height _	2.050	_M	In.
с.	REE Front	Width _	1.250	_M	In.
	TRAILER	Height -	2.050	M	In.
d.	Rear	Width Height	1.250 2.050	M M	

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

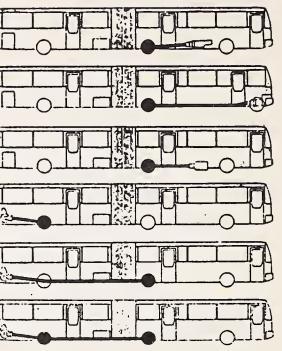

	Front	Door	Rear <u>CEREST</u>	Door	Front	<u> </u>	ear Door
a. Empty Bu	15 <u>328</u> mm.	in.	<u>328</u> mm.	in.	<u>328</u> mm.	_in.	328 mm
Kneeling	g busmm.	in.	mm .	in.	m	_in.	
Ъ.	<u>175</u> mm.	in.	<u>200</u> mm.	in.	200 mm.	_in.	193 mm
с.	<u>175</u> mm.	in.	<u>200</u> mm.	in.	200 mm.	_in.	194 mm
d.	mm.	in.	mm .	in.	m	_in.	194 mm
e.	<u>400</u> mm.	in.	<u>320</u> mm.	in.	320 mm.	_in.	265 mm
f.	<u>500</u> mm.	in.	<u>320</u> mm.	in.	320 mm.	_in.	265 mm
g.	mm .	in.	mm .	in.	m	_in.	265 mm

10. Interior Head Room (center of aisle) a. Front Axle Location mm. in. 2190 b. Drive Axle Location mm. _____in. 2105 c. Trailer Axle Location 2105 mm. in. 11. Aisle Width Between Transverse Seats (minimum) 550 mm. in. 12. Floor Height Above Ground (at each door) a. Front Door 680 mm. in. TRACTOR Rear b. Genter Door (informationation) 730 mm. in. Front TRAILER c. Rear Door 730 mm. in. 909 d. Rear Door Horizontal Turning Envelope 13. a. Outside Body Turning Radius including bumper 11 M. Ft. In. b. Inside Turning Radius 9.05 M. Ft. In. c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer 1.30 M. Ft. In. 14. Wheel Bases <u>5.810</u> M. Ft. In. a. Tractor 6.897 M. Ft. In. b. Trailer 12.707 M. Ft. In. c. Total 15. Seats a. Total Number of Seats 48 b. Minimum Knee to Hip Room 450 mm c. Minimum Foot Room 240 mm 690 mm d. Distance between seat backs

D.	Weight of Bus	Full Compl of Fuel, Oil		At G	JWR			
	1. On Front Axle	3,160 Kg.	Lbs.	6,050 Kg.	Lbs.			
	2. On Center Axle	<u>5,000</u> Kg.	Lbs.	10,740 Kg.	Lbs.			
	3. On Rear Axle	6,200 Kg.	Lbs.	<u>9,700 Kg</u> .	Lbs.			
	4. TOTAL	14,360 Kg.	Lbs.	26,490 Kg.	Lbs:			
Ε.	Main Engine							
	1. Manufacturer	STEYR-DAIMLER	-PUCH AG					
	2. Type 9 FU A 3. Model							
	4. MERXXXXXXX Hors	epower	250	HP				
	DIN	at	2300	RPM				
	5. Turbo Charge, M	ake & Type _	Kuhnle /	Kopp and Kau	ısch			
	6. Maximum Vehicle	Speed	<u>75 </u> K	РН	MPH			
F.	Transmission							
	1. Manufacturer	ZV or VOITH						
	2. Type <u>4 HP 500</u>	3. Mc	del854	4. :	Speeds <u>4</u>			
	5. Retarder, Make,	Type, and S	ize		<u></u>			
G.	Axle, Front							
	1. Manufacturer	STEYR						
	2. Type 3.	Model	4. GA	WRK	gLbs.			
Н.	Axle, Center Drive							
	1. Manufacturer	STEYR						
	2. Type 3.	Model	4. GA	WRK	gLbs.			
J.	<u>Axle, Rear</u>							
	1. Manufacturer	STEYR						
	2. Type 3.	Model	4. GA	WRK	gLbs.			

ar
city
-
-
<u>X</u> No
<u>x</u> KW

Α.	FIRM	VAN HOOL N.V.
Β.	ADDRESS _	B VAN HOOLSTRAAT 58
	-	B-2578 KONINGSHOOIKT
	_	BELGIUM
С.	TELEPHONE	031/82.15.00
D.	TELEX	31709 E. CABLE
F.	OTHER MANU	FACTURING SITES
G.	NUMBER OF	YEARS EXPERIENCE PRODUCING BUSES 30
н.	BRIEF DESC	RIPTION OF PRODUCT LINE <u>Midi-bus; city, intercity</u> bus;
		articulated bus; luxury coach; articulated coach;
		double-deck coach; airport bus
I.	PRODUCTIVE	CAPACITY <u>1400</u> BUSES PER YEAR
J.	COMPLIANCE	WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	YES	NOBUT_POSSIBLENKNOWN
К.	COMPLIANCE	WITH NOISE STANDARDS
	YES	APBUT POSSIBLENKNOWN
L.	COMPLIANCE	WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS
	YES	ØØB <u>UT POSS</u> IBLI⊈NKNOWN


Vertical front engine with second axle powered.

Side mounted engine with second axle powered.

Rear engine with third axle powered.

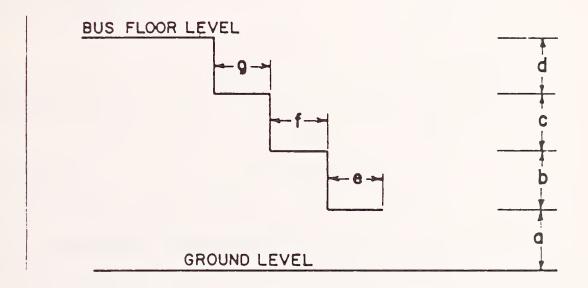
Rear engine with second axle powered.

Engine immaterial, with hydrostatic or electric transmission.

APPENDIX C

*

Α.	Bus N	Manufacturer VAN HOOL N.V.		
В.	Bus N	Model NumberAG 280		
C.	Dimer	nsions		
	1.	Overall Length <u>17340</u> M. <u>56</u>	Ft.	<u> </u>
	2.	Overall Width 2490 M. 8	Ft.	In.
	3.	a. Overall Height (maximum) <u>3150</u>	Μ.	<u>10ft1</u> In. 10 ² -4 ⁴
		b. Height (main roof line)	M.	In.
	4.	Angle of Approach		8°_Deg.
	5.	a. Breakover Angle Tractor		8° Deg.
		b. Breakover Angle Trailer		B° Deg.
	6.	Angle of Departure		8°_Deg.
	7.	Articulation Angles		
		a. Horizontal		<u>36° </u> Deg.
		b. Vertical		<u>+8to-8°</u> Deg.



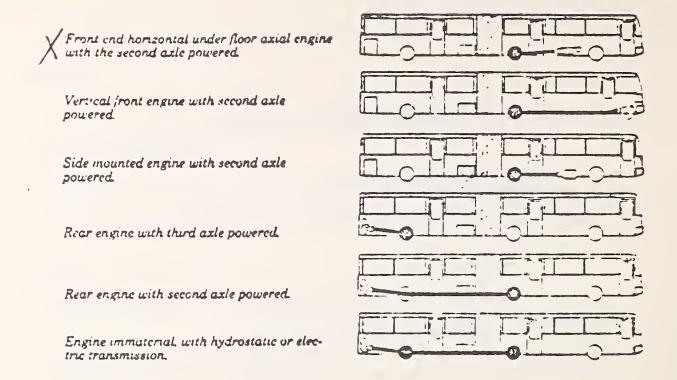
8. Doorway Clear Opening (Including grab handles)

a.	Front	Width 1,150	_M	<u>45,3</u> In.
		Height	_M	In.
Ъ.	Center (if provided)	Width 1,150	_M	<u>45.3</u> In.
		Height	_м	In.
с.	Rear	Width 1,150	_M.	<u>45,3</u> In.
		Height	м.	In.

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

		Fro	nt Doo	r	Cen	ter	Door	R	ear Door	
a.	Empty Bus	3 <u>50</u> ⁿ	im. <u>13.</u>	77in.3	50	mm.	<u>13.77</u> in.	<u>350</u>	_mm .13 <u>.77</u>	_in.
	Kneeling bus	s n	ım.	_in.		mm.	in.		_mm	_in.
Ъ.		1 <u>65</u> m	m. <u>6,49</u>	_in.	165	mm.	in.	<u>165</u>	_mm	_in.
с.		1 <u>65</u> m		_in.	165	mm .	in.	165	_mm	_in.
d.		n		_in.	1	mm.	in.		_mm	_in.
e.		Π	im	_in.	1	mm.	in.		_mm	_in.
f.		п	m.	_in.	1	mm.	in.		_mm .	in.
g.		m	m.	in.	1	mm.	in.		_mm	in.

10.	Interior Head Room (center of aisle)	
	a. Front Axle Location <u>2.325 mm. 91.53</u> in.	
	b. Drive Axle Location 2.325 mm. in.	
	c. Trailer Axle Location 2.325 mmin.	
11.	Aisle Width	
	Between Transverse Seats (minimum) _450 mm.	in.
12.	Floor Height Above Ground (at each door)	-
	a. Front Door <u>680 mm. 26.8</u>	in.
	b. Center Door (if provided) 680 mm. 26.8	in.
	c. Rear Door <u>680 mm. 26,8</u>	in.
13.	Horizontal Turning Envelope	
	a. Outside Body Turning Radius including bumper	
	<u>10.765</u> M. <u>35</u> Ft. <u>1</u> In.	
	b. Inside Turning Radius	
	<u>6.500</u> M. 21 Ft. 1 In.	
	c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer	
	MFtIn.	
14.	Wheel Bases	
	a. Tractor <u>5.200 M. 17 Ft.</u> In.	
	b. Trailer <u>6.650</u> M. <u>21</u> Ft. <u>3</u> In.	
	c. Total <u>11.850 M. 38 Ft. 3</u> In.	
15.	Seats	
	a. Total Number of Seats _ <u>51 basic version</u>	
	b. Minimum Knee to Hip Room	
	c. Minimum Foot Room	


D.	Weight of Bus	Full Compof Fuel, O:		At GVWR		
	1. On Front Axle	Kg.	Lbs.	<u>_6800_</u> Kg.3 <u>084</u>	_Lbs.	
	2. On Center Axle	Kg.	Lbs.	<u>10500 Kg. 4762</u>	Lbs.	
	3. On Rear Axle	Kg.	Lbs.	<u>6850 Kg.3107</u>	_Lbs.	
	4. TOTAL	Kg.	Lbs.	24000_ ^{Kg} 10886	_Lbs.	
E.	Main Engine					
	1. Manufacturer	MAN				
	2. Type <u>DIESEL</u>	·····	3. Mode	1 · D2566		
	4. Net S.A.E. Hors	epower	280	HP DIN		
		at _	2.200	RPM		
	5. Turbo Charge, M	lake & Typ <mark>e</mark>				
	6. Maximum Vehicle	Spced .	<u>76 K</u>	РН <u>47,2</u> М	РН	
F.	Transmission					
	1. Manufacturer	'0ITH				
	2. TypeAUTOMATI	<u>.</u> 3. 1	Model D854	4. Spee	ds <u>4</u>	
	5. Retarder, Make,	Type, and	Size <u>VOI</u>	H. HYDRAMIC, INTE	GRATED	
G.	Axle, Front					
	1. Manufacturer MAN					
	2. Type <u>INDEPEND</u> ENT.	Model <u>V7-</u>	<u>705L</u> 4. GA	WR6 <u>800</u> Kg.3 <u>0</u> 8	34Lbs.	
н.	Axle, Center Drive					
	1. Manufacturer <u>SOMA-VAN HOOL</u>					
	2. Type <u>ECCENTRIC</u> 3.	Model 10.5	T 4. GA	WR <u>10500</u> Kg. <u>4</u>	762 Lbs.	
J.	Axle, Rear					
	1. Manufacturer MAN					
	2. Type INDEPENDENT.	Model <u>v7-7(</u>	SL_ 4. GA	WR 6 <u>850</u> Kg. <u>3</u>	LO7_Lbs.	
		γ Η − (5)				

Κ.	Suspension				
	Air <u>YES</u> St	eel Spring	T	orsion Bar	<u>NO</u>
L.	Brakes				
	1. Make		Type AIR (PERATED	
Μ.	Interior Lighting				
	1. Type		fluorescent lu	uminators	
	2. Number of Fixt	ures	continuous lig	pht_ramp	
N.	Tires				
	1. Manufacturer	MICHELIN			
	2. Size				
	3. Type		LOTE X		
0.	Air Conditioning				
	1. Make <u>OPTION</u>	2. Mode	1 ON ROOF	3. Capacity	40.000 KCAL
Ρ.	Kneeling Feature	Available	Yes X	No	
Q.	Wheelchair Lift A	vailable	Yes <u> x</u>	No	
R.	Vehicle available	as Electric	c Trolley Bu	s? Yes X	10
	1. Model <u>AG280T</u>				
	2. Auxiliary Ther	mal Power Pi	lant? Yes _	X No	KW (40T0101)

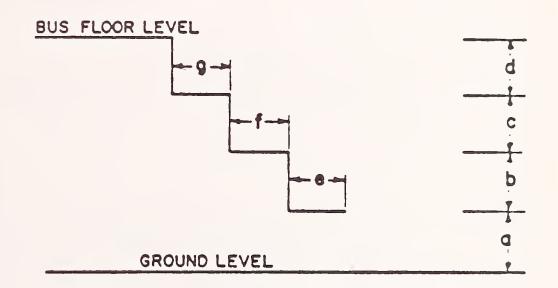
Α.	FIRM WALTER VETTER GmbH & Co						
з.	ADDRESS Ringstrasse 28, D-7012 Fellbach						
с.	TELEPHONE 0711 / 58 90 41						
Ð.	TELEX 07-254 496 E. CABLE VETTER FEI	LBACH					
F.	OTHER MANUFACTURING SITES						
G.	NUMBER OF YEARS EXPERIENCE PRODUCING BUSES	50					
н.	BRIEF DESCRIPTION OF PRODUCT LINE Buses made	to measure,					
	articulated buses, double deck buses, low floor and	apron buses					
I.	PRODUCTIVE CAPACITY 220 BUSES	PER YEAR					
J.	COMPLIANCE WITH U.S. OR CALIFORNIA EMISSION S	IANDARDS					
	YES FARTLY NO UNKNOWN						
х.	COMPLIANCE WITH NOISE STANDARDS						
	YES FARTLY NO UNKNOWN						
L.	COMPLIANCE WITH.FEDERAL MOTOR VEHICLE SAFETY	STANDARDS					
	YES FARTLY NO UNKNOWN						

For export to USA compliance with J, K and L is possible

VET- (1)

APPENDIX C

Α.	Bus	Manufacturer WALTER VETTER GmbH & Co					
в.	Bus	Model Number Standardgelenkzug Typ 16-18					
C. Dimensions							
	1.	Overall Length 16,6 - 18 M. Ft.		_In.			
	2.	Overall Width 2,5 M. Ft.		In.			
	3.	a. Overall Height (maximum) 3,15 M.		_In.			
		b. Height (main roof line) 2,05 M.		In.			
	4.	Angle of Approach	a ⁰ 30'	Deg.			
	5.	a. Breakover Angle Tractor		Deg.			
		b. Breakover Angle Trailer		Deg.			
	6.	Angle of Departure	8 ⁰ 40'	Deg.			
	7.	Articulation Angles					
		a. Horizontal	± 5 ⁰	Deg.			
		b. Vertical	45 ⁰	Deg.			



8. Dcorway Clear Opening (Including grab handles)

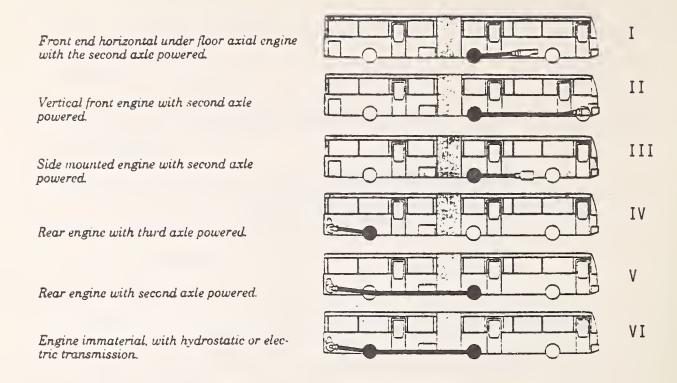
a.	Front	Width 1,25 M. In.
		Height 2,05 M. In.
Ъ.	Center (if provided)	Width <u>1,25</u> M. In.
		HeightMIn.
c.	Rear	Width <u>1,25 M</u> . In.
		Height ⁽ MIn.

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

		Front D	<u>oor</u> .	Center	Door	Rear D)cor
a.	Empty Bus	<u>355</u> mm.	in.	<u>350 mm.</u>	in.	<u>350</u> mm.	in.
	Kneeling bus	<u>380</u> mm.	in.	<u>300 mm .</u>	in.	<u>300 mm.</u>	in.
Ъ.		239 tim.	in.	<u>173</u> mm.	in.	<u>173</u> mm.	in.
с.		269 mm.	in:	<u>173</u> mm.	in.	<u>173</u> mm.	in.
ċ.		m	in.	173 mm .	in.	173 mm.	in.
e.		<u>280 mm.</u>	in.	280 mm .	in.	<u>280 mm.</u>	in.
Ξ.		<u>500</u> mm.	in.	280 mm .	in.	280 mm.	in.
3.		mm	in.	280 mm .	in.	280 m.m.	in.

10.	Interior Head Room (center of aisle)				
	a. Front Axle Location 2.050 mm. in.				
	b. Drive Axle Location 2.050 mm. in.				
	c. Trailer Axle Location 2.050 mmin.				
11.	Aisle Width				
	Between Transverse Seats (minimum) 2.380 mm.	in.			
12.	Floor Height Above Ground (at each door)				
	a. Front Door 768 mm.	in.			
	b. Center Door (if provided) 868 mm.	in.			
	c. Rear Door 868 mm.	in.			
13.	Horizontal Turning Envelope				
200	a. Outside Body Turning Radius including bumper				
	12.0 M. Ft. In.				
	b. Inside Turning Radius				
	⁶ M. ⁷ Ft. In.				
	c. Maximum Swing Out Radius of Right Rear curbside				
	corner of Trailer				
	0.30 MFtIn.				
14.	Wheel Bases				
	a. Tractor <u>5,0 M.</u> Ft. In.				
	b. Trailer <u>6,45-7,65 M</u> . Ft. In.				
	c. Total 2 11,45-12,65M. Ft. In.				
15.	Seats				
	a. Total Number of Seats upon request				
	b. Minimum Knee to Hip Room				
	c. Minimum Foot Room				

D.	Full Weight of Bus, of Fue	Complementel, Oil, Wa		At GVWR	
	1. On Front Axle	KgL	bs. 7000		Lbs.
	2. On Center Axle	KgL	bs. 11000	Kg	_ Lbs.
	3. On Rear Axle	KgL	bs. <u>7200</u>	_Kg	Lbs.
	4. TOTAL	KgL	bs. 25000	_Kg	_Lbs.
5.	Main Engine				
	1. Manufacturer Mercede	s-Benz or upo	n request		
	2. Type Ch. 437 hA	3. 1	Model		
	4. Net S.A.E. Horsepower	280	HP		
		at 2200	RPM		
	5. Turbo Charge, Make &	Type yes	ККК		
	6. Maximum Vehicle Speed	ca 100	КРН	M	PH
Ξ.	Transmission				
	1. Manufacturer upon re	quest			
	2. Type	3. Model_		4. Speed	is
	5. Retarder, Make, Type,	and Size	ves upon i	equest	
G.	Axle, Front				
	1. Manufacturer Mercede	s-Benz			
	2. Type <u>VC 4</u> 3. Model	4	. GAWR 70	00_Kg	Lòs.
4	Axle, Center Drive				
•••	1. Manufacturer Mercede	s-Benz			
	2. Type HS 7 3. Model		GAWR 12	500 Kg	Lbs.
	2. Type 5. Hoden	· ·	. ORWIC	^ · <u>_</u>	
J.,	<u>Axle, Rear</u>				
	1. Manufacturer Mercede	s-Benz			
	2. Type VC 4 3. Model	4	. GAWR	<u>201</u> Kg.	Lbs.
	VET-	(5)			


К.	Suspension		
	Air X Steel Spring	3	Torsion Bar
L.	Brakes - System		
	1. MakeUestinghouse	Туре	
М.	Interior Lighting		
	1. Type	upon request	
	2. Number of Fixtures		
N.	Tires		
	1. Manufacturer	upon request	
	2. Size	12 R 22,5	
	3. Type		
0.	Air Conditioning		
	1. Make upon request 2. Mod	le1	3. Capacity
Ρ.	Kneeling Feature Available	Yes X	No
Q.	Wheelchair Lift Available	Yes X	No
R.	Vehicle available as Electr	ic Trolley	Bus? Yes X No
	1. Model C-Bus Gelenkzug		
	2. Auxiliary Thermal Power	Plant? Yes	X NO KW TO 180

VOLVO BUS CORP.

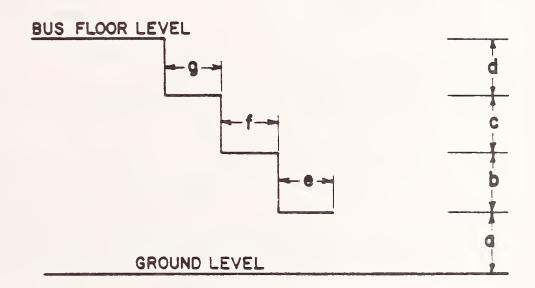
MANUFACTURERS PROFILE

Α.	FIRM Volvo Bus Corporation
В.	ADDRESS S-405 08 Gothenburg Sweden
с.	TELEPHONE 031/59 00 00
D.	TELEX 27000 E. CABLE
F.	OTHER MANUFACTURING SITES All over Sweden, Europe, Latin America,
	Far East, Australia
G.	NUMBER OF YEARS EXPERIENCE PRODUCING BUSES Since 1932
	BRIEF DESCRIPTION OF PRODUCT LINE Single, articulated and
	doubledecker buses GVW 11-23 tons
I.	PRODUCTIVE CAPACITY 5500 units BUSES PER YEAR
J.	COMPLIANCE WITH U.S. OR CALIFORNIA EMISSION STANDARDS
	YES X 1983 NO UNKNOWN
К.	COMPLIANCE WITH NOISE STANDARDS
	YES X NO UNKNOWN
L.	COMPLIANCE WITH FEDERAL MOTOR VEHICLE SAFETY STANDARDS
	YES X 1983 NO UNKNOWN

M. VEHICLE TYPE

APPENDIX C

TECHNICAL INFORMATION TO BE FURNISHED


Α.	Bus	Manufacturer Volvo Bus Corporation		
в.	Bus	Model Number BloM articulated-I		
С.	Dime	ensions		
	1.	Overall Length M. 55 and 60	_Ft	In.
	2.	Overall WidthM	Ft.96 and	102 _{In} .
	3.	a. Overall Height (maximum)	M.124	In.
		b. Height (main roof line)	M.120	In.
	4.	Angle of Approach	8	Deg.
	5.	a. Breakover Angle Tractor	8	Deg.
		b. Breakover Angle Trailer		Deg.
	6.	Angle of Departure	9	Deg.
	7.	Articulation Angles		
		a. Horizontal	48	Deg.
		b. Vertical		Deg.

8. Doorway Clear Opening (Including grab handles)

a.	Front	Width	M.	48	_In.
		Height	M.	85	_In.
Ъ.	Center (if provided)	Width	M.	48	_In.
		Height	M.	85	_In.
с.	Rear	Width	M.	48	_In.
		Height	M.	85	_In.

9. Step height from Ground, Step Riser Heights and Step Depths (step height and depth to be measured at center of step).

	Front Door	Center	Door.	Rear Door	
a. Empty Bus	<u>mm</u> . <u>14</u>	inmm.	14 in.		_in.
Kneeling bus	mm	inmm.	in.	m	_in.
Ъ.	9	inmm.	10 in.	10	_in.
с.	mm. 9	inmm.	10 in.	10	_in,
d.	m	inm.	in.	m	_in.
е.	m	inmm.	in.	m	_in.
f.	n	inmm.	in.	m	_in.
g •	nm	inmm.	in.	m	_in.

10.	Interior Head Room (center of aisle)
	a. Front Axle Locationmm. 85 in.
	b. Drive Axle Locationmm. 80 in.
	c. Trailer Axle Locationmm. 80 in.
11.	Aisle Width
	Between Transverse Seats (minimum)mm. 23 in.
12.	Floor Height Above Ground (at each door)
	a. Front Door mm. 32 in.
	b. Center Door (if provided) mm. 34 in.
	c. Rear Doormm. 34 in.
13.	Horizontal Turning Envelope
	a. Outside Body Turning Radius including bumper
	M. <u>39</u> Ft. <u>6</u> In.
	b. Inside Turning Radius
	M. 20 Ft. In.
	c. Maximum Swing Out Radius of Right Rear curbside corner of Trailer
	MFtIn.
14.	Wheel Bases
	a. Tractor M. Et. 216.5 In.
	b. Trailer M. Ft. 291.4 In.
	c. Total <u>M. Ft. 507.9</u> In.
15.	Seats
	a. Total Number of Seats <u>68 + 1</u> 27 in
	b. Minimum Knee to Hip Room 27 in
	c. Minimum Foot Room

·D.	Full Complement Weight of Bus of Fuel, Oil, Water At GVWR
	1. On Front Axle Kg. Lbs. Kg. 14000 Lbs.
	2. On Center Axle Kg. Lbs. Kg. 21000 Lbs.
	3. On Rear Axle Kg. Lbs. Kg. 15000 Lbs.
	4. TOTAL Kg. Lbs. Kg. 50000 Lbs.
E.	Main Engine
	1. Manufacturer Volvo
	2. Type THD 100 DC 3. Model <u>6 cylinders</u> , Turbo
	4. Net S.A.E. Horsepower 242 HP
	at <u>2200</u> RPM
	5. Turbo Charge, Make & Type <u>Holset</u>
	6. Maximum Vehicle Speed KPH MPH dependant on gear ratios
F.	Transmission
	1. Manufacturer ZF or Allison
	2. Type <u>Automatic</u> 3. Model <u>4. Speeds</u>
	5. Retarder, Make, Type, and Size Telma 160 on Allison
G.	Axle, Front
	1. Manufacturer Volvo
	2. Type 3. Model 4. GAWRKgLbs.
Н.	Axle, Center Drive
	1. Manufacturer Volvo
	2. Type 3. Model 4. GAWRKgLbs.
J.	Axle, Rear
	1. Manufacturer Volvo
	2. Type 3. Model 4. GAWRKgLbs.

К.	Suspension			
	Air Yes Sto	eel Spring		Torsion Bar Yes
L.	Brakes			
	1. MakeEurop	bean	Type <u>S-</u>	type
М.	Interior Lighting			
	1. Type			
	2. Number of Fixt	ures		
N.	Tires			
	1. Manufacturer	Hichelin	n XZA	
	2. Size	12 x 22.	.5	
	3. Type			
0.	Air Conditioning	Optional		
	1. Make	2. Mode	1	3. Capacity
Ρ.	Kneeling Feature	Available	Yes X	No
Q.	Wheelchair Lift A	vailable	Yes	No
R.	Vehicle available	as Electri	c Trolley	Bus? Yes No
	1. Model			
	2. Auxiliary Ther	mal Power P	lant? Yes	No KW

75 copies

	FORMERLY FORM		Technology transit bu	HE 18.5 .A3 UMTA- 82 Gundersen,
--	---------------	--	--------------------------	---------------------------------------

Square dge, Massachusetts 02142

Official Business Penalty for Private Use \$300

.

Postage and Fees Paid Research and Special Programs Administration DOT 513

U.S.MAIL